
NOTIFICATIONS WITH NATIVE MOBILE APPLICATIONS 
B. Bertrand∗, J. Forsberg, MAX IV, Lund, Sweden 

E. Laface, G.Weiss, European Spallation Source ERIC, Lund, Sweden
THPV011

REST API

• Receive notifications

• Communicate with mobile clients

Notification workflow


POST to /services/{service_id}/notifications

Sending notifications

A service is a category to group notifications.

Notification workflow iOS and Android clients

Push notification Single message view

Notify server

Messages list



Notify server APIread_services endpoint source code


• Async Python web framework

• Based on Starlette, a lightweight ASGI 

framework and Pydantic, a data validation 
library using python type annotations


• High performance

• Fast to code

• Based on OpenAPI standard

• API documentation via Swagger UI

• Postgresql as database

Notify Server



Sending a notification from Python

Sending a notification with curl

Sending notifications

Send a POST to /services/{service_id}/notifications 
with the fields:

• title

• subtitle

• url


A service is a category to group notifications.


Each service is identified by a service_id (UUID).


Users can subscribe to the service they want.

Integrated in:

• ESS LogBook

• OpenXAL

• EPICS alarms via Kafka

• Prometheus

• Achtung (new alarm management 

system for Tango)




Notification workflow


1. An application sends a message to the Notify Server (the message is linked to a service).

2. The server sends a notification to both Apple Push Notification service and Firebase Cloud 

Messaging (depending on the device token type) for all users who subscribed to that 
service.


3. The notification is sent by Apple and Google cloud services to the user device.

4. When the user opens the notification, the full message is read from the Notify server API.

Notification workflow



ESS Login screen (iOS) MAX IV Login screen (iOS)

List of Services (iOS) Single message view (iOS)

iOS and Android clients

Push notification alert (Android)


