
STANDARDIZING A PYTHON DEVELOPMENT ENVIRONMENT FOR 
LARGE CONTROLS SYSTEMS

S. Clark, P. Dyer, S. Nemesure, BNL, Upton, NY 11973, U.S.A. 
MOPV049

Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy 

Python Distribution
- Locally-installed Anaconda distribution with fixed package set
- Uniform across all hosts for performance & maintainability
- Standardized annual upgrade 

Project Organization
- Predefined templates provide standard project boilerplate

- Interactive tool to create new projects from templates
- Projects packaged using Python standards

Version Control
- VCS managed by Git + Gitlab
- Standardized versioning scheme for easy tagging & rollback 
- Leveraging CI/CD for deterministic builds
- Simple CLI to initiate tag, build & release

Development & Distribution
- Process enforces version control procedures

- Final form both responsive & size efficient
- Released applications remain functional across 

Anaconda/system upgrades



Python Distribution

• Anaconda was chosen as a base
• Provides a standard set of packages for use across the system
• Well-supported with first- & third-party tools for maintenance 

• Each year, a new custom distribution is created, including…
• The latest Anaconda base release
• Upgrades to existing third-party packages from last release
• Additional third-party packages requested to be included

• The final distribution is stored locally on all hosts
• conda-pack is used to bundle the distribution for release to hosts
• Done for performance considerations; previous distributions served 

from network mounts suffered considerable performance penalties
• Once on a host, the distribution must not be changed 

• Distributions kept locally for two years
• Then moved to network storage for long-term availability
• Limits disk usage by distributions

Latest Anaconda downloaded 
to development host

Packages upgraded & 
installed

Upgraded distribution 
packaged with conda-pack

Distribution upgrade installed 
to all hosts

Third-oldest copy moved to 
network

Figure 1: Anaconda upgrade procedure



Project Organization

• Projects must contain certain uniform elements
• setup.py file defining package metadata (name, author, etc.)
• Requirements files for defining development & production dependencies
• Build definition for Gitlab CI/CD

• Templates were developed to define uniform structure
• Each project type (GUI, CLI, package, web application) has a dedicated template
• Templates contain boilerplate code for projects; e.g., default main widget for GUI, 

Django dependencies for web apps, additional setup.py configuration for packages
• Templates may specify creation scripts to aid in project setup; e.g., setup a git 

repository & Gitlab project, create the project virtual environment

• Custom CLI tool caddy automates project setup
• Provides list of available templates
• Prompts user to define template variables (name, whether to setup Gitlab, etc.)
• Creates project & runs post-creation scripts if available

• Developers can focus more on development & logic rather project 
setup

Figure 2: caddy project setup process



Version Control

• Git chosen for VCS base
• Free & open source software with great support
• Commonly used & low learning curve 

• Gitlab is used for central repository
• Free & open source, but with optional upgrade for enterprise 

support
• Many additional features aside from VC (continuous 

integration/deployment)
• Semantic Versioning

• Each software release tagged with version number
• Triggers CI/CD process when pushed to Gitlab
• Provides meaning to versions (see Figure 4)

• git release wrapper simplifies process
• Provides user with next valid semantic version choices
• Runs optional pre-release scripts; e.g., code formatting & unit 

testing
• Pushes tag to Gitlab to start release process

Given a version number MAJOR.MINOR.PATCH, increment 
the:
• MAJOR version when you make incompatible API 

changes,
• MINOR version when you add functionality in a 

backwards compatible manner, and
• PATCH version when you make backwards compatible bug 

fixes.

Figure 4: Semantic Versioning summary 
(from https://semver.org/)

Figure 3: git release prompt



Development & Distribution

Applications

• Distributed as single file packages
• Created using Shiv tool from LinkedIn
• Bundles all source & dependencies in 

executable ZIP file
• Maintains responsive performance

• Stored on network mount for universal access

Packages

• Built using the Python Packaging User Guide
• Packages bundled into .tar.gz files by 
setuptools & placed in shared directory for 
later installation

• Pip configured to search for custom packages

Dependency Management
• Pip offers “dumb” dependency management

• No concept of production vs development packages, 
dependency version conflict resolution, etc.

• Custom cadpip tool was developed to fill these holes
• Based on piptools package
• Handles dependency conflict resolution
• Maintains separate development & production 

package sets

Virtual Environments
• Allows multiple projects to use additional third-party 

packages & different package versions
• Projects also have access to packages in the Anaconda 

distribution
• Installing large & common packages (Qt, Numpy, etc.) 

in the base keeps applications sizes down
• Can be precisely recreated for deterministic project 

development by new users


