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e Access to PyPI from within technical
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e Ability to install internal and public
packages using pip

e Filters to prevent unwanted or
malicious packages being installed
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Development and deployment tools

Step 1: Create a project Step 2: Freeze dependencies
s acc-py app lock ./my-project/
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e Resolve floating dependency versions

e Including Java dependencies

e Guarantees that the dependencies in production are
the same as those tested in development

e Create a new Python package following a simple structure

e Tests are a first-class component of the project

e Possibility to generate configuration for APl Documentation
(sphinx) and Continuous integration (GitLab-Cl)
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e Always runs in “isolated” mode

Step 3: Deploy to central location
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=> my-project version 1.2.3 was deployed
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Consistent & repeatable deployment
Based on a virtual environment
Auditable history of application changes
Common location for deployments

=> Consistent behaviour no matter the executing user or current directory

e Runs as a Python module, no additional scripting required
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Returns the current Configuration object.
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Description

A client for Role-based access control (RBAC) of CERN’s accelerator control system.
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Classes
2 #& » pyrbac APl documentation » pyrbac » pyrbac.Configuration
AccountType An enum containing valid account types. k B By s
mertiar] | Public lent APLfor perfoming authet
pyrbac.Configuration
AuthenticationListener Represents listener for LoginService.
3 S class pyrbac.Configuration

The class Configuration provides configu B o
Configuration :

RBAC client. The class C fon provides for a
Enviromment An enum containing valid environment t Methods

Additional. optional extra fields used in t! configuration. get_current () Returns the cur

con Returns the RB,

pyccda.async_models.Device

Auto-generated code for models

class pyccda.async_modes. Devicelaccelerator_name=None, accelerator_zone=None, allas=None,
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virtual devices are allowed).
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= alias
Device.retations ([passive, active])  Return the relations for this device.
Controls Configuration Data API —— Generate a st of pevice instances based on the given

search query.
Operations available for Devices Device Controller

/devices/{id} Upd:

Attributes

Device. sccelerator nane The accelerator_name of this pevice

terator_zone The . zone of this oevice .

[ Ty -

[0 /devices/{name} Getdevice byname

/devices/alias/{alias} Getdevicebyalas

o Conclusion )

There has been significant growth in the use of Python in the
accelerator sector at CERN, with support for high-level accelerator
controls having been introduced in 2019. To facilitate this, key
infrastructure has been put in place, including development tools for a
simple yet Pythonic experience, solutions for consistent application
deployment and execution, and a suite of libraries for interacting with
CERN’s accelerator control system.

When considered together, the infrastructure presented here has
resulted in a stable and effective platform from which Python users
can efficiently build operational-quality libraries, applications and
services for CERN’s next accelerator run and beyond. Furthermore,
such infrastructure is general in purpose, and would be a good fit for a
diverse range of organisations wishing to adopt a robust and
\maintainable operational Python environment. /




