
Introducing Python as a Supported Language for
Accelerator Controls at CERN

P. Elson, C. Baldi, I. Sinkarenko, CERN, Geneva, Switzerland

MOPV040

Introduction
In 2019, Python was adopted as an officially supported
language for interacting with CERN's accelerator
controls. Highlighted here is some of the key
infrastructure put in place to facilitate a user friendly,
idiomatic and stable Python platform fit for operational
high-level accelerator controls.

Python well-adapted for:

Data processing and analysis

Machine learning & deep learning

System automation

Rapid prototyping

GUI development

Mathematical modelling

Hardware interfacing

...

Acc-Py base distribution
● Lightweight, easy to install, used on local disk, containers and network drives
● Designed to be installed side-by-side with other versions of Acc-Py base
● Each invocation logged
● Not a pre-prepared fully-fledged distribution such as Anaconda or LCG

=> Designed to be extended by the user

Virtual environment
● A user can create an unlimited number

of virtual environments
● No special privileges required
● Python interpreter and standard library

linked from the base distribution

pip install
● User can choose which

packages to install
● Pre-configured to use the

Acc-Py package index
● CERN-specific packages

combined with those from the
Python Package Index (PyPI)

● Tools built on top of pip (e.g.
poetry) can be used

venv
├── bin
│ ├── python (symlink to base)
│ └── …
├── lib
│ └── pythonX.Y
│ └── site-packages
│ └── <venv-packages>
├── include
├── share
└── pyvenv.cfg

Examples at CERN:

● Machine development (MD) studies

● Linac4 Source autopilot (WEPV018)

● Timing sequencer GUI (THPV015)

● Expert GUI applications

● Physics simulations

● Numerical optimisation for operations

● Rapid hardware interfacing

● ...

Python invocation logs Acc-Py package index

PyPI proxy

Internal packages

Acc-Py
package index

PyPI

Release

Sonatype Nexus

Install Discover

twine pip

Motivation

● Access to PyPI from within technical
network

● Ability to install internal and public
packages using pip

● Filters to prevent unwanted or
malicious packages being installed

● Archive of packages in case of PyPI
outage or package removal

Group

Each Acc-Py Python invocation is

logged, along with data including the

time, machine, username and a list of

all packages installed in the

environment.

This data has been invaluable in

helping inform both technical and

strategic decisions, and it provides a

snapshot of usage of Python for

accelerator controls.

In numbers, there are around 10,000

Python invocations per day and over

200 unique active users (September 2021).

Development and deployment tools

$ acc-py init my-project
=> Writing setup.py
=> Writing README.md
=> Configuring my_project's directory structure

$ acc-py app lock ./my-project/
$ acc-py app deploy ./my-project/
=> Building wheel for my-project
=> Creating app in deployment location
=> my-project version 1.2.3 was deployed

$ acc-py app run my-project

● Always runs in “isolated” mode
 => Consistent behaviour no matter the executing user or current directory

● Runs as a Python module, no additional scripting required

Step 1: Create a project Step 2: Freeze dependencies Step 3: Deploy to central location

Step 4: Run in production

● Consistent & repeatable deployment
● Based on a virtual environment
● Auditable history of application changes
● Common location for deployments

● Resolve floating dependency versions
● Including Java dependencies
● Guarantees that the dependencies in production are

the same as those tested in development

● Create a new Python package following a simple structure
● Tests are a first-class component of the project
● Possibility to generate configuration for API Documentation

(sphinx) and Continuous integration (GitLab-CI)

/deployment/location/my-project
├── 1.2.3
│ ├── exec
│ │ ├── …
│ └── venv
│ ├── …
├── app-config.yml
└── audit.log

./my-project/deployment/app
├── config.json
├── requirements-jar.json
└── requirements.txt

./my-project/
├── my_project/
│ ├── __init__.py
│ └── tests/
│ └── __init__.py
├── README.md
└── setup.py

● Auto-generated code for models
and controllers

● Type annotations auto-injected
using libcst

● Thin layer provides user friendly
object oriented API

Conclusion
There has been significant growth in the use of Python in the
accelerator sector at CERN, with support for high-level accelerator
controls having been introduced in 2019. To facilitate this, key
infrastructure has been put in place, including development tools for a
simple yet Pythonic experience, solutions for consistent application
deployment and execution, and a suite of libraries for interacting with
CERN’s accelerator control system.

When considered together, the infrastructure presented here has
resulted in a stable and effective platform from which Python users
can efficiently build operational-quality libraries, applications and
services for CERN’s next accelerator run and beyond. Furthermore,
such infrastructure is general in purpose, and would be a good fit for a
diverse range of organisations wishing to adopt a robust and
maintainable operational Python environment.

Python as glue

● C++ based binding definition
● Easy to craft Pythonic bindings
● Creates shared-object module
● Released as pre-compiled
manylinux2014 Python wheels

● Essential for accessing a wide range of control
system functionality from Python

● Binding to existing APIs in other languages was the
quickest and most resource-efficient approach

● All APIs should be type annotated for IDE
autocompletion and static analysis

● Manages in-process JVM
● Zero-copy arrays between Python & Java
● Type annotations with stubgenj
● JARs automatically installed into the

virtual environment

openapi-generator
(+post-processing)

Sw
ag

ge
r /

 O
pe

nA
PI

JPype

