MOPV040 ntroducing Python as a Supported Language for
Accelerator Controls at CERN

P. Elson, C. Baldi, I. Sinkarenko, CERN, Geneva, Switzerland ICALEPCS 2021

Introduction Python invocation logs Acc-Py package index
In 2019, Python was adopted as an officially supported

language for interacting with CERN's accelerator Acc-Py base distribution T = : e ——
controls. Highlighted here is some of the key g o pe:
infrastructure put in place to facilitate a user friendly, o Lightweight, easy to install, used on local disk, containers and network drives e — — == -~ PyPI proxy
idiomatic and stable Python platform fit for operational * Designed to be installed side-by-side with other versions of Acc-Py base - 439824 ety
high-level accelerator controls. « Each invocation logged 233 Group

o Nota pre-prepared fully-fledged distribution such as Anaconda or LCG . e 2 packagelinaex

=> Designed to be extended by the user

Internal packages [

\J
Install Discover

Python well-adapted for:

ation is

cc-Py Python invC .
¢ Juding the
L4, along with 1an m:m] D

Data processing and analysis Examples at CERN: m e el muen h the

Virtual environment Each A

pip install

()

o Auser can create an unlimited number

of virtual environments
No special privileges required
Python interpreter and standard library
linked from the base distribution

User can choose which
packages to install
Pre-configured to use the
Acc-Py package index
CERN:specific packages
[T oy honevatinel o base] combined with those from the
| =& Python Package Index (PyPl)
—ub
|
|
I

Machine learning & deep learning » Machine development (MD) studies @ s e o e @) &

Juable in Motivation

jalu

— at en invalu !

System automation « Linac4 Source autopilot J This dats oth technical and
helping \nf‘ovm i e rovides

Rapid prototyping « Timing sequencer GU| ™% ate o e of Python for

o Access to PyP from within
technical network

=

o Ability to install internal and public
packages using pip
bers, there are a ’\muml M
Mathematical modeliing « Physics simulations e copecB
Python invocations P!
F unique active US

2 pythonx.v Tools built on top of pip (e.g.

site.packa poetry) can be used

o Filters to prevent unwanted or
ges
jenv-packages>

malicious packages being installed
i, Hardware interfacing « Numerical optimisation for operations

|— share

« Archive of packages in case of PyPI
outage or package removal

(V]
(V]
(V]
@ cuiceveiopmen + Expen GU apicatons Seebierato
(V]
(V]
Q.

— pyvenv.cfg

« Rapid hardware interfacing

openapi-generator
(spost processing)

Development and deployment tools

Dyecda asyne_models Device

— * Auto-generated code for models e
= - and controllers P
. : . : : : « Type annotations auto-injected s
Step 1: Create a project Step 2: Freeze dependencies Step 3: Deploy to central location iz g
using libcst oy
rivaconte - « Thin layer provides user friendly = R—————
s acc-py init my-project s acc-py app lock ./my-project/ s acc-py app deploy ./my-project/ . ‘,,:t“““”"“IC:‘?:""' - g object oriented API
> Building wheel for ny-project e L §)
> Creating app in deployment location o
guring my_proj y [y-proj ploye $
/my-project/ el St L) /deployment /location/my-project S/ T s e e
ey | e el (Y ooy y-proj $ Contols configurationData AP -
Py | ‘ exec 9
":‘5/ it T = * Manages in-process JVM = e -
T } S . %erorcopy arrays. belx«een :ylhon &Java o = e
sotup.py {— app-contig.ymt « Type annotations with stubgen; = = e = -
= it < 3RS automatcal insialled o the Python as glue
Vitlial svgnmint » Essential for accessing a wide range of control
 Create a new Python package following a simple structure * Resolve floating dependency versions « Consistent & repeatable deployment system functionality from Python
 Tests are afirst-class component of the project Including Java dependencies « Based on a virtual environment N
« Possibilty to generate configuration for API Documentation * Guarantees that the dependencies in production are « Auditable history of application changes o1iokin 1 extsing AFIS T uien Ehaiages dastle Conclusion
i ickest and most resource-efficient approacl
(sphinx) and EOREHORSINERTSton (GitLab-Cl) M o those tested! In development * Common location for deployments i i There has been significant growth in the use of Python in the
- « All APIs should be type annotated for IDE. accelerator sector at CERN, with support for high-level accelerator
lZ)W, 11 autocompletion and static analysis controls having been introduced in 2019. To facilitate this, key
¥ 2 - infrastructure has been put in place, including development tools for a
Step 4: Run in production - simple yet Pythonic experience, solutions for consistent application

deployment and execution, and a suite of libraries for interacting with
CERN's accelerator control system.

5 acc-py app run my-project

When considered together, the infrastructure presented here has
resulted in a stable and effective platform from which Python users.
can efficiently build operational-quality libraries, applications and

o Always runs in “isolated” mode
=> Consistent behaviour no matter the executing user or current directory

. ® C++ based binding definition o
Runs as a Python module, no additional scripting required « Easy to craft Pythonic bindings Pribac.Configuration services for CERN's next accelerator run and beyond. Furthermore,
o Creates shared-object module s ——— such infrastructure is general in purpose, and would be a good fit for a
 Released as pre-compiled SR e s o diverse range of organisations wishing to adopt a robust and

many1inux2614 Python wheels e

maintainable operational Python environment.

/Introduction \

In 2019, Python was adopted as an officially supported 4 i) . N\
language for interacting with CERN's accelerator ACC'Py base distribution

controls. Highlighted here is some of the key
infrastructure put in place to facilitate a user friendly,
idiomatic and stable Python platform fit for operational

high-level accelerator controls. /

Lightweight, easy to install, used on local disk, containers and network drives

Designed to be installed side-by-side with other versions of Acc-Py base

Each invocation logged

Not a pre-prepared fully-fledged distribution such as Anaconda or LCG
=> Designed to be extended by the user

.

e ~ - | Python well-adapted for:
Virtual environment e D
ip install : . . 7
e A user can create an unlimited number p p O Data processing and analysis \ Examples at CERN:
of virtual environments i :
. - . e Usercan chqose which : O Machine learning & deep learning e Machine development (MD) studies
o No special privileges required packages to install :
e Python interpreter and standard library e Pre-configured to use the O System automation o Linac4 Source autopilot WEPV018)
linked from the base distribution - Acc-Py package index : . ' o
e CERN-specific packages o O Rapid prototyping o Timing sequencer GU| (THPV015)
|1— pythonisyuisnicitofbase) combined with those from the O GUI development e Expert GUI applications
L Python Package Index (PyPl)
= pythonX.Y ° TOOItS t;uilt OE top o;pip (e.g- O Mathematical modelling e Physics simulations
L— site-packages poetry) can be use
- e RTTREETE S) 0 Hardware interfacing o Numerical optimisation for operations
|— share
— pyvenv.cfg O e Rapid hardware interfacing
... Y
7 e ...

Python invocation logs

Acc-Py package index

K | Oustboord | ace-py usage trackig
© Fulscrosn Share Clone Et
Fiters @ Se:

acc-py: totallogs ace-py:uni

ace-py:ogaltime.

439,824

233

unique users

logs received

2 W G

acc-py: cumulative sum logs count

KL @ Last30days

[ation is
c-Py Python invoCatity
E)ag(;;heg\calor\\lg with data mca\‘trj‘cciilr;g\ itst)ceof

achi me
{ e,maohme,usema'
t2‘;\T|\pa\ckages installed in the
environment.

This data has been invaluable In

g i bo
helping inform |
strategic decision

i d
th technical an
s, and it provides @

snapshot of usage of Python for
accelerator controls.

pers, there aré around 10,0
Bython cations per da@ and oV

f Y
vOoCca per 2021)
Pthggig‘ue active users S

(5 Sonatype Nexus Repository Manager

© & Q

_>

e

Sonatype Nexus \

PyPI proxy \
Acc-Py
Grawp package index
Internal packages 7
Install Discover
Motivation

O Welcome

» Q search +
& Upload pynstalr
pyiapc
230
231

Pyjapc-2.31-py3-none-anywhi
I pyjapc-231targz
Py

} £ pykerberos
pylhcsubmitter

b6 pylint
pylogbook

packages/pyjapc/2.3/pyjapc-2.31-py3-none-anywhl

Summary

Repository -
Format pypi
Component Name pyjapc

Component Version 231
Usage
pip

pip install pyjapc==2.3.1

Attributes

]

e Access to PyPI from within technical
network

e Ability to install internal and public
packages using pip

e Filters to prevent unwanted or
malicious packages being installed

e Archive of packages in case of PyPI
outage or package removal

Development and deployment tools

Step 1: Create a project Step 2: Freeze dependencies
s acc-py app lock ./my-project/

$ acc-py init my-project

=> Writing setup.py

=> Writing README.md b .

=> Configuring my project's directory structure N o e e e R VESHE(BRE
= —_— }— config.json

(L:> . /my-project/ }— requirements-jar.json
|— my_project/
| — __init .py
| L tests/
| L— _init .py

L requirements.txt

|— README.md
L— setup.py

e Resolve floating dependency versions

e Including Java dependencies

e Guarantees that the dependencies in production are
the same as those tested in development

e Create a new Python package following a simple structure

e Tests are a first-class component of the project

e Possibility to generate configuration for APl Documentation
(sphinx) and Continuous integration (GitLab-Cl)

Step 4: Run in production —

$ acc-py app run my-project

e Always runs in “isolated” mode

Step 3: Deploy to central location

s acc-py app deploy ./my-project/
=> Building wheel for my-project

=> Creating app in deployment location

=> my-project version 1.2.3 was deployed

ll : /deployment/location/my-project
—1.2.3
| — exec
[

L— venv

|
|
|— app-config.yml
L— audit.log

Consistent & repeatable deployment
Based on a virtual environment
Auditable history of application changes
Common location for deployments

=> Consistent behaviour no matter the executing user or current directory

e Runs as a Python module, no additional scripting required

import jpype as jp

> if __name__ == '__main

cern = jp.JPackage('cern')

2 users = CommonContextService.findU

CommonContextService = cern.lsa.client.common.CommonContextService

@ findUsers(self, accelerat CommonCo
m findUserContextMappingHistory (self. CommonCo
m findAcceleratorUsers (sel
m findAcceleratorUser (self, ac a
@ findDrivableContextByUser (self, st. Commo
m findDrivableContextByAcceleratorUser

@ findStandAloneContextByUser (self Commo
m findStandAloneContextByAcceleratoruser

' P nter toinsert plac

f, a e mmo

Manages in-process JVM
Zero-copy arrays between Python & Java
Type annotations with stubgenj

JARs automatically installed into the
virtual environment

o / o All APIs should be type annotated for IDE
pybinad11

q
5
&
N
$
&
=
%)

4)

Python as glue f"

e Essential for accessing a wide range of control
system functionality from Python

e Binding to existing APIs in other languages was the
quickest and most resource-efficient approach

\autocompletion and static analysis

J

py::class_<Configuration, std::shared_ptr<Configuration>>(module, "Configuration”, R"pyrbadoc(

The class Configuration provides configuration for instant|
)pyrbadoc”)

.def_static("get_current”, &Configuration::getCurrent, R"pyrbal
Returns the current Configuration object.

W

C++ based binding definition
Easy to craft Pythonic bindings
Creates shared-object module
Released as pre-compiled
manylinux2014 Python wheels

pyrbac

Description

A client for Role-based access control (RBAC) of CERN’s accelerator control system.

openapi-generator

(+post-processing)

Classes
2 #& » pyrbac APl documentation » pyrbac » pyrbac.Configuration
AccountType An enum containing valid account types. k B By s
mertiar] | Public lent APLfor perfoming authet
pyrbac.Configuration
AuthenticationListener Represents listener for LoginService.
3 S class pyrbac.Configuration

The class Configuration provides configu B o
Configuration :

RBAC client. The class C fon provides for a
Enviromment An enum containing valid environment t Methods

Additional. optional extra fields used in t! configuration. get_current () Returns the cur

con Returns the RB,

pyccda.async_models.Device

Auto-generated code for models

class pyccda.async_modes. Devicelaccelerator_name=None, accelerator_zone=None, allas=None,

Is_cycle_bound=None, description=None, device_class_info=None, fec_name=None, is_global=None, id=None,
and controllers amellone,_pprieMon, responsbleane,srve Iamestone SatENor, sussteme oot
. . timing_domain=None, _local_vars_configuration=None)
Type annotations auto-injected

using libest Methods
Thin layer provides user friendly st devce nthedattase usingh it om i

object oriented API ﬁ R Femove s deieusig . .14 (Curenty nly

Device.create ()

virtual devices are allowed).

ss () Return the device class for this device.

L) sw

5 T L el Search fora pevice instance matching the given name or
= alias
Device.retations ([passive, active]) Return the relations for this device.
Controls Configuration Data API —— Generate a st of pevice instances based on the given

search query.
Operations available for Devices Device Controller

/devices/{id} Upd:

Attributes

Device. sccelerator nane The accelerator_name of this pevice

terator_zone The . zone of this oevice .

[Ty -

[0 /devices/{name} Getdevice byname

/devices/alias/{alias} Getdevicebyalas

o Conclusion)

There has been significant growth in the use of Python in the
accelerator sector at CERN, with support for high-level accelerator
controls having been introduced in 2019. To facilitate this, key
infrastructure has been put in place, including development tools for a
simple yet Pythonic experience, solutions for consistent application
deployment and execution, and a suite of libraries for interacting with
CERN’s accelerator control system.

When considered together, the infrastructure presented here has
resulted in a stable and effective platform from which Python users
can efficiently build operational-quality libraries, applications and
services for CERN’s next accelerator run and beyond. Furthermore,
such infrastructure is general in purpose, and would be a good fit for a
diverse range of organisations wishing to adopt a robust and
\maintainable operational Python environment. /

