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Introduction
In 2019, Python was adopted as an officially supported 
language for interacting with CERN's accelerator 
controls. Highlighted here is some of the key 
infrastructure put in place to facilitate a user friendly, 
idiomatic and stable Python platform fit for operational 
high-level accelerator controls.

Python well-adapted for:

Data processing and analysis

Machine learning & deep learning

System automation

Rapid prototyping

GUI development

Mathematical modelling

Hardware interfacing

...

Acc-Py base distribution
● Lightweight, easy to install, used on local disk, containers and network drives
● Designed to be installed side-by-side with other versions of Acc-Py base
● Each invocation logged
● Not a pre-prepared fully-fledged distribution such as Anaconda or LCG

=> Designed to be extended by the user

Virtual environment
● A user can create an unlimited number 

of virtual environments
● No special privileges required
● Python interpreter and standard library 

linked from the base distribution

pip install
● User can choose which 

packages to install 
● Pre-configured to use the 

Acc-Py package index
● CERN-specific packages 

combined with those from the 
Python Package Index (PyPI)

● Tools built on top of pip (e.g. 
poetry) can be used

venv
├── bin
│   ├── python (symlink to base)
│   └── …
├── lib
│   └── pythonX.Y
│      └── site-packages
│         └── <venv-packages>
├── include
├── share
└── pyvenv.cfg

Examples at CERN:

● Machine development (MD) studies

● Linac4 Source autopilot (WEPV018)

● Timing sequencer GUI (THPV015)

● Expert GUI applications

● Physics simulations

● Numerical optimisation for operations

● Rapid hardware interfacing

● ...



Python invocation logs Acc-Py package index

PyPI proxy

Internal packages

Acc-Py
package index

PyPI

Release

Sonatype Nexus

Install Discover

twine pip

Motivation

● Access to PyPI from within technical 
network

● Ability to install internal and public 
packages using pip

● Filters to prevent unwanted or 
malicious  packages being installed

● Archive of packages in case of PyPI 
outage or package removal

Group

Each Acc-Py Python invocation is 

logged, along with data including the 

time, machine, username and a list of 

all packages installed in the 

environment.

This data has been invaluable in 

helping inform both technical and 

strategic decisions, and it provides a 

snapshot of usage of Python for 

accelerator controls.

In numbers, there are around 10,000 

Python invocations per day and over 

200 unique active users (September 2021).



Development and deployment tools

$ acc-py init my-project
=> Writing setup.py
=> Writing README.md
=> Configuring my_project's directory structure

$ acc-py app lock ./my-project/
$ acc-py app deploy ./my-project/
=> Building wheel for my-project
=> Creating app in deployment location
=> my-project version 1.2.3 was deployed

$ acc-py app run my-project

● Always runs in “isolated” mode
   => Consistent behaviour no matter the executing user or current directory

● Runs as a Python module, no additional scripting required

Step 1: Create a project Step 2: Freeze dependencies Step 3: Deploy to central location

Step 4: Run in production

● Consistent & repeatable deployment
● Based on a virtual environment
● Auditable history of application changes
● Common location for deployments

● Resolve floating dependency versions
● Including Java dependencies
● Guarantees that the dependencies in production are 

the same as those tested in development

● Create a new Python package following a simple structure
● Tests are a first-class component of the project
● Possibility to generate configuration for API Documentation 

(sphinx) and Continuous integration (GitLab-CI)

/deployment/location/my-project
├── 1.2.3
│   ├── exec
│   │   ├── …
│   └── venv
│   ├── …
├── app-config.yml
└── audit.log

./my-project/deployment/app
├── config.json
├── requirements-jar.json
└── requirements.txt

./my-project/
├── my_project/
│   ├── __init__.py
│   └── tests/
│       └── __init__.py
├── README.md
└── setup.py



● Auto-generated code for models 
and controllers

● Type annotations auto-injected 
using libcst

● Thin layer provides user friendly 
object oriented API

Conclusion
There has been significant growth in the use of Python in the 
accelerator sector at CERN, with support for high-level accelerator 
controls having been introduced in 2019. To facilitate this, key 
infrastructure has been put in place, including development tools for a 
simple yet Pythonic experience, solutions for consistent application 
deployment and execution, and a suite of libraries for interacting with 
CERN’s accelerator control system.

When considered together, the infrastructure presented here has 
resulted in a stable and effective platform from which Python users 
can efficiently build operational-quality libraries, applications and 
services for CERN’s next accelerator run and beyond. Furthermore, 
such infrastructure is general in purpose, and would be a good fit for a 
diverse range of organisations wishing to adopt a robust and 
maintainable operational Python environment.

Python as glue

● C++ based binding definition
● Easy to craft Pythonic bindings
● Creates shared-object module
● Released as pre-compiled 
manylinux2014 Python wheels

● Essential for accessing a wide range of control 
system functionality from Python

● Binding to existing APIs in other languages was the 
quickest and most resource-efficient approach

● All APIs should be type annotated for IDE 
autocompletion and static analysis

● Manages in-process JVM
● Zero-copy arrays between Python & Java
● Type annotations with stubgenj
● JARs automatically installed into the 

virtual environment

openapi-generator
(+post-processing)
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