

ALBA CONTROLS SYSTEM SOFTWARE STACK UPGRADE
G. Cuni, F. Becheri, S. Blanch-Torné, C. Falcon-Torres, C. Pascual-Izarra, Z. Reszela, S. Rubio-Manrique

(ALBA-CELLS, Barcelona, Spain)

MOPV037

 ALBA, a 3rd Generation Synchroton Light Source
located near Barcelona in Spain, is in operation
since 2012.
 During the last 10 years, the updates of ALBA's
Control System (CS) were severely limited in order to
prevent disruptions of production equipment, at the
cost of having to deal with hardware and software
obsolescence.
 The construction of the second phase new
beamlines accelerated the renewal and upgrade of
the software stack.

We are in the process of switching to
● Debian OS, Tango 9, HDB++
● Python 3, PyQt5 and PyQtGraph, etc.
In order to ensure the project quality and to facilitate
future upgrades, we try to:
● automate testing, packaging with CI/CD pipelines
● configuration management
using, among others, the following tools:
● pytest, Docker, GitLab-CI and Salt...

ALBA Control System Obsolescence
ALBA Control System (CS)
● Uses Tango as middleware, a distributed control

system framework based on CORBA.
● Python is the main programming language.
● GUIs at ALBA are developed using Taurus, a

library for building desktop apps in PyQt.
● Generic and transversal services are integrated

in Tango ecosystem and used across the facility:
● Sardana, a scientific SCADA suite for

experiment control on beamlines (BLs).
● Panic, an IEC62682 compliant Alarm Handling

suite.
● Every sub-system has its specific applications,

e.g. MXCuBE control application for the
macromolecular crystallography experiments
(BL13), TXM application used for the tomography
experiment (BL09), or the accelerator timing
system controls stack.

● Software run on diskless compact PCI and
industrial PCs, and VMs with Linux distribution

Obsolescence
● OpenSuSE 11.1, a Linux distro used during the

ALBA initial years reached its end-of-life in 2011.
This forced us to use core libraries and modules
(e.g. libc, Python, numpy, PyQt4,...) that dated
back to 2008.

● Use of OpenSuSE 11.1 tied us to use Python 2.6.
● The Bliss packaging system was limited in terms

of automatic package creation and deployment.
Software was unpackaged in non-standard paths
and it was not possible to properly define package
dependencies

● Tango 7 and its event system was unmaintained
since Tango 8 was released in 2012.

● PyQt4 reached its end of life in 2018 and PyQwt5
was by then already unmaintained (its latest
release from 2011) and was never ported to PyQt5
or Python 3 leaving us without a plotting library.

ALBA Control System Upgrade

2010

2012

2014

2016

11.1

12.1

2018

2020

2022

2024

9

10

11

3.5

3

8

9

5

PyQtGraph 0.10

4.6
New OS evaluation:

openSUSE Leap
vs. Debian

Sardana 3 upgrade:
Python 2.6 → Python 3.5

Tango 7/8 → Tango 9
T3 (PyQt4.4)→ T4 (PyQt 4.6)

GUIs for Accelerators:
Tango 7 → Tango 9

T3 (PyQt4.4)→ T4 (PyQt 4.6)
Reimplementation of plotting widgets

PyQwt5 → PyQtGraph

Leap

Applied Practices & Tools
Testing
● We switched from unittest to PyTest for developing

automatic tests (it provides better API and many
useful features out-of-the-box).

● We employ hardware simulators in our tests. We
plan to employ automatic tests with real hardware
into CI and run nightly stress tests to discover
non-easily reproducible bugs and performance
degradations.

Automation and Reproducibility
● Executing tests as part of the CI reduced risk of

regressions in the Taurus and Sardana projects
and we will promote it in other developments.

● Creating packages and uploading them to Debian,
PyPI and conda repositories enables going
one step further towards CD

● We also build and publish docs as part of CI.

Configuration
● We use Salt to configure and manage software

(Debian, Git, pip, conda) on remote nodes.
● We define a catalog of ALBA Services e.g.: Tango,

Taurus, Archiving, etc. The application of the Salt
recipes allows us to automate the installation and
configuration of the same Services in parallel in
different machines and in a reproducible way.

Containerization
● Our use of (Docker) containers has been mainly

limited to the context of software development as:
● providing the environments for the CI jobs
● providing a pre-configured a clean environment

for manual testing or packaging of software
● Developing or debugging in a reproducible

environment

Towards ALBA II & Conclusions
ALBA II project will consist of an upgrade to the
4th generation class of synchrotron light source
and is planned to happen in 2028.

The ALBA Computing Division started preparing for
the future requirements and plans to start exploratory
projects. We will at least evaluate use of:

● containers or isolated environments in order to
facilitate software upgrades by achieving inter-
apps isolation and isolation from the host OS.

● web technologies for operators GUIs, which in
comparison to desktop applications are cross-
platform compatible and more manageable

● Tango 10 which code will be refactored/rewritten
in order to make it immune to the obsolescence of
libraries and technologies e.g. CORBA.

We believe that it is crucial to keep the OS
updated. In our case, the lack of update in the OS
conditioned many other updates and, in the long
term, generated more efforts in workarounds than
the effort of keeping it up to date. Also, it generated a
huge effort when it had to be finally updated.

Keeping the controls system up-to-date is a
collective responsibility of the whole team.
Decisions at different levels, from day-to-day to
strategic, should be taken considering the long-term
maintainability of the control system.

It is highly recommended to continuously follow
and explore emerging technologies in order to
propose improvements, feel self-confident and
determined in proposing and conducting upgrade
projects.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

