

Page 2

Modernization of Code and Development Techniques

| The Evolution of the DOOCS C++ Code Base | Lars Fröhlich, 2021-10-18

Preparing DOOCS for future projects

Goals

Improve:
readability
maintainability
stability
teamwork

Image in the public domain, by Bingenberg via openclipart.org

Unit Tests
Add tests for old code (before refactoring)

Refactor APIs to allow testing
Catch2 unit testing framework

Build System
Move from make to Meson

Base Library
New General Utility Library for C++14 (GUL14)

Continuous Integration
Move to in-house Gitlab for DevOps

Cross-Project Refactoring
API breaks require global modifications

Access to almost all repositories

Code Review
Required for core libs

Encouraged for other libs
Optional for servers

Training
Series of DOOCS lectures

C++ style guide

Page 3

Lines of Code in the Core DOOCS Libraries

| The Evolution of the DOOCS C++ Code Base | Lars Fröhlich, 2021-10-18

… excluding comments or blank lines

Refactoring
&

C++14

Almost
header-only,

test-
dominated

Page 4

GUL14

Base library (think Abseil [Google] or Folly [Facebook], but smaller)

Open source (LGPLv2.1, https://winweb.desy.de/mcs/docs/gul/)

Multi-platform: Linux, MacOS, Windows

Code of wide applicability

No external dependencies except C++/C standard libraries

No control system specific code

Quality standards:
• Style: Code must follow our C++ style guide and should follow the

C++ Core Guidelines
• Documentation: Every function, type, etc. must be documented
• Unit tests: Every entity in the library must have associated tests
• Code review: Every commit must be approved by at least one

other developer

| The Evolution of the DOOCS C++ Code Base | Lars Fröhlich, 2021-10-18

General Utility Library for C++14

https://winweb.desy.de/mcs/docs/gul/
https://winweb.desy.de/mcs/docs/gul/

Page 5

DOOCS Fact Sheet

1992: DOOCS is born as a control solution for
vacuum devices for superconducting cavity
test stands at what will become the Tesla Test
Facility TTF. It soon gets ported the HERA
proton storage ring.

In t ’90 , bj t-oriented programming
becomes a hot trend in software development.
DOOCS stands for “Distributed Object-
Oriented Control System”. To efficiently
control hardware and use high-level
abstractions, C++ is the natural choice.

DOOCS is built around the
SunRPC/ONC RPC remote
procedure call which is better
known as the protocol behind
the network file system NFS.

| The Evolution of the DOOCS C++ Code Base | Lars Fröhlich, 2021-10-18

Some facts and figures around the control system

Today, DOOCS is used at the particle
accelerators ARES, European XFEL, FLASH,
PETRA III, and numerous smaller facilities at
DESY. There are a few external users as well.

3 core libraries: GUL14, clientlib, serverlib

~100 other libraries: hardware support, DAQ,
databases, high-level controls, particle
t k ng, …

~500 server types: connect hardware devices,
process&archive data, run feedback loops,
evaluate data, execute advanced algorithms

~8000 C++ source files

~1.5 million lines of code

Images: Copyright DESY 2015, 2017

