
MOPV025 TangoGraphQL: A GraphQL binding for Tango control system Web-based applications
J.L. Pons , European Synchrotron (E.S.R.F), Grenoble, France

Introduction and Challenge GraphQL

Tango GraphQL TangoGraphQL internal

Register
useLayoutEffect() React hook

Refresh
by calling setSate() React hook

Instantiate Instantiate
using model handle

GUI
Controller

WebATK component
Viewer

GraphQL client
Model

Listener

list

Model View Controller using React

subscription {

subscribe(attNames:"simu/powersupply/1/current",

modes:PERIODIC) {

full_name

index

event

value {

value

quality

timestamp

error

}

subscription_error

}

}

Tango Load Balancer
server

(embedding a TangoGraphQL)

=
=

=
TangoGraphQL

Client WebATK
Application

Ask for less
loaded URL

Get load
informations

GraphQL traffic

Load balancing model

Introduction

Web-based applications have seen a huge increase in popularity in recent years, replacing standalone applications. GraphQL
provides a complete and understandable description of the data exchange between client browsers and back-end servers.
GraphQL is a powerful query language allowing API to evolve easily and to query only what is needed. GraphQL also offers a
WebSocket based protocol which perfectly fit to the Tango event system. Lots of popular tools around GraphQL offer very
convenient way to browse and query data.

Challenge
Today, at the ESRF, we use mainly Java standalone applications for the accelerator control system. These applications are built
on top of the Java Swing ATK framework and Tango java APIs. Today, regarding GUI technologies, we see almost only
development around web technologies such as React, Angular, Vue.js, Bootstrap, Material UI, etc... It is natural that we
migrate our GUI to web based applications.

http:// or https://

Tango protocol (CORBA + ZeroMQ)

ws:// or wss://

React / GraphQL / MVC
Java ATK is based on the Model View Controller model. React (Facebook) offers a very convenient way to implement this
model using hooks. GraphQL , initially developed by Facebook in 2012, was moved as open source to the GraphQL
foundation. A JavaScript Tango Web ATK built on top of React and GraphQL is currently under development. This framework is
designed in order to ease as much as possible the migration of our Java applications.

TangoGraphQL C++ server
TangoGraphQL is a pure C++ http(s) server which exports a GraphQL binding for the Tango C++ API. TangoGraphQL also exports
a GraphiQL web application which allows to have a nice interactive description of the API and to test queries. TangoGraphQL
has been designed with the aim to maximize performances of JSON data serialization, a binary transfer mode is also foreseen

Register
useLayoutEffect() React hook

Refresh
by calling setSate() React hook

Instantiate Instantiate
using model handle

This WebAtkPanel
uses GraphQL API
to make
introspection of
the Tango server.
It uses Material UI
graphical
components.

GUI
Controller

WebATK component
Viewer

GraphQL client
Model

Listener
list

Web browser JavaScript

GUI

Tango WebATK

React / GraphQL client

TangoGraphQL (C++ HTTP server)

Tango Servers

Architecture

Application exampleModel View Controller using React

GraphQL

Introspection mechanism
GraphQL provides an introspection system which allows to query information
about the supported schema. GraphQL uses GraphQL query to perform
introspection. GraphiQL is a web application based on this introspection system
which allow to write query using modern tools such as completion, syntax
checking and documentation browsing. It is an official project of the GraphQL
Foundation. It uses the Tango GraphQL schema definition to provides all these
features to the TangoGraphQL API . TangoGraphQL C++ server also exports a
GraphiQL interface.

GraphQL in JavaScript
On the frontend side, GraphQL queries and mutations are classic HTTP requests
so they can be made using the native browser FetchAPI for instance.

query=`

{

device(name:"simu/powersupply/1") {

read_attributes(names:["state","current","voltage"]) {

value(resolveEnum:true)

}

}

}`

let response: Response = await fetch("http://debian9acu:8000/graphql", {

method: 'POST',

headers: {

'Content-Type': 'application/json',

'Accept': 'application/json',

},

body: JSON.stringify({ query: query })

});

let json;

try {

json = await response.json();

} catch (error) {

throw new Error(response.status + " " + response.statusText);

}

console.log("State=" + json.data.device.read_attributes[0].value);

console.log("Current=" + json.data.device.read_attributes[1].value);

console.log("Voltage=" + json.data.device.read_attributes[2].value);

GraphQL over WebSocket in JavaScript
The GraphQL foundation offers a WebSocket JS client API embedded in a js module called graphql-ws. It
provides 3 asynchronous callbacks to handle incoming events.

import { createClient } from 'graphql-ws';

const client = createClient({url: "ws://tangorest01.esrf.fr:8000/graphql-ws"});

async () => {

const onNext = (value: any) => { /* handle incoming values */ };

const onError = (error: any) => { /* handle error */ };

const onResolve = () => { /* handle termination */ };

await new Promise(() => {

unsubscribe = client.subscribe(

{ query: 'subscription { my GraphQL subscription request }', },

{

next: onNext, error: onError, complete: onResolve,

},

);

});

})();

GraphiQL executing an introspection request

https://gitlab.com/tango-controls/TangoGraphQL/-/blob/master/graphql/schema/GQLSchema.schema

Tango GraphQL

GraphQL Request
GraphQL defines 3 types of request: query, mutation and subscription. Queries are read only requests
(basically a read_attribues call), mutations are write requests (write_attributes or command_inout) and
subscriptions are used to register to Tango event. The requests are sent to the server via a HTTP POST
request.
When registering to an event, the TangoGraphQL server will push JSON frames when a Tango event is sent
by the Tango server. When using the GraphQL over WebSocket protocol, the client (and the server) use
the socket in a bidirectional mode (full duplex), which means that the client (or the web server) can send
or receive requests at any time.

{

device(name:"simu/powersupply/1") {

read_attributes(names:["Current","Voltage"]) {

value

write_value

quality

}

error

}

}

{

"data": {

"device": {

"read_attributes": [

{

"value": 0,

"write_value": 0,

"quality": "ATTR_ALARM"

},

{

"value": 0,

"write_value": null,

"quality": "ATTR_VALID"

}

],

"error": null

}

}

}

mutation {

device(name:"simu/powersupply/1") {

write_attribute(name:"Current",value:10) {

error

}

error

}

}

{

"data": {

"device": {

"write_attribute": {

"error": null

},

"error": null

}

}

}

subscription {

subscribe(attNames:"simu/powersupply/1/current",

modes:PERIODIC) {

full_name

index

event

value {

value

quality

timestamp

error

}

subscription_error

}

}
{

"full_name": "simu/powersupply/1/current",

"index": 0,

"event": "periodic",

"value": {

"value": 0,

"quality": "ATTR_ALARM",

"timestamp": "1633601964.304923",

"error": null

},

"subscription_error": null

}

Error Management
The GraphQL error management standard is not very convenient. When a node cannot be
returned, the GraphQL standard impose that the node must be null and that an additional
errors JSON block has to be filled with errors. With large queries which may contain lots of
errors, the browsing of this additional error tree is a bit heavy. TangoGraphQL server handles
errors as query for best performance.

Subscription type contains all subscriptions.

GraphQL WS protocol create one WebSocket per subscribe request.

type Subscription {

Main event subscription request.

The attNames array and the modes array must have the same length.

When one or more subscriptions fail, the subscription_error field of the returned

DeviceAttributeFrame is set.

subscribe(attNames:[String!]!,modes:[EventSubscriptionMode!]!):AttributeFrame

}

Part of the Tango GraphQL schema

TangoGraphQL internal

TCP connection
TangoGraphQL server uses multi threaded connection handling and is HTTP 1.1 compliant. It uses
the fact that in HTTP 1.1 the TCP connection can be persistent (keep-alive). The server keeps a
“device factory” during all the TCP connection life cycle. This prevents from reimporting each
time Tango devices and avoid Tango database overload. When the connection is closed,
TangoGraphQL releases all allocated resource associated to the connection.

double_spectrum: 16383 random values
16 digits, TEXT mode
Get HTTP Request :1 ms
Reading Tango device:0.9 ms
Encoding JSON:6 ms (using Grisu2)
Send HTTP Response :0.4 ms

double_spectrum: 16383 random values
64bits double, BIN mode
Get HTTP Request :0.9 ms
Reading Tango device:0.9 ms
Encoding BINData:0.3 ms
Send HTTP Response :0.3 ms

Performance
GraphQL internal parser has been written from scratch
and designed to add a true binary JSON transfer. Binary
transfer is not a part of the GraphQL standard but it can
be added without breaking the GraphQL compatibility by
using HTTP header. Despite the fact that TangoGraphQL
uses fast floating point serialization algorithm Grisu2
from Florian Loitsch (~2 times faster than standard c++
formatting), image and spectrum need to be transferred
in binary format in order to reach good performance at
both server and client side. On the client side, binary
transfer can be easily achieved using native DataViews
and ArrayBuffer.

Authentication and Access Control
TangoGraphQL uses Open SSL for https with
basic HTTP authentication scheme. Single Sign-
On authentication scheme is currently under
development. Tango Access Control cannot be
implemented using Tango 9 as it is not possible
to set a username for a Tango client thread.
This will require new feature of Tango 10.

try {

arrayBuffer = await response.arrayBuffer();

} catch (error) {

// Handle error

}

let dv = new DataView(arrayBuffer);

console.log("buff size="+arrayBuffer.byteLength);

var sum = 0;

for(let i=0;i<arrayBuffer.byteLength;i+=8) {

sum += dv.getFloat64(i, true); // Little endian

}

Load balancing
TangoGraphQL is also a Tango server and can be configured, monitored or instantiated
using standard Tango tools. It also has attributes that indicates number of connected
clients, number and type of connections, network transfer, etc… The client can use this
information to select the less loaded instance among a set of TangoGraphQL server.

Tango Load Balancer
server

(embedding a TangoGraphQL)

=
=

=
TangoGraphQL

Client WebATK
Application

Ask for less
loaded URL

Get load
informations

GraphQL traffic

Asynchronous Group Calls
When the client needs to retrieve data from several devices (typically the state of n devices) , the
client can construct a GraphQL request using labeling. The server can detect labeled
read_attributes calls and make parallel asynchronous calls using Tango Group calls.

TangoGraphQL server timing

Load balancing model

TangoGraphQL server configuration using Jive

