MOPV005

TOWARDS A NEW CONTROL SYSTEM FOR PETRA IV

R. Bacher, T. Delfs, D. Mathes, T. Tempel, T. Wilksen <u>Deutsches Elektronen-Synchrotron DESY</u>, Hamburg, Germany

<u>Control</u> <u>System</u> <u>Framework</u> <u>Graphical</u> <u>User</u> <u>Interfaces</u>	 PETRA III: 2300-metre-long storage ring feeding 24 user beamlines Operated either in brightness mode (480 equally distributed bunches, 120 mA stored beam) or in timing mode (40 equally distributed bunches, 100 mA stored beam) Research groups from all over the world use the particularly brilliant, intense X-ray light for a variety of experiments - from medical to materials research 	 PETRA IV: High-resolution 3D X-ray microscope for chemical and physical processes Will extend the X-ray view to all length scales, from the atom to millimetres Offers outstanding possibilities and optimal experimental conditions for industry Will replace PETRA III, but keeping the existing experimental halls An additional experimental hall will provide space for additional 18 user beamlines New booster synchrotron DESY IV 	Data Acquisition and Archiving High-Level Control Applications
Hardware Interfaces	 From PETRA III to PETRA IV: Preparatory phase: 2020 – mid 2023 → Technical Design Report Construction: Expected to begin in early 2026 Commissioning: In 2028 		<u>Quality</u> <u>Assurance</u>

Control System Framework

- Distributed Object-Oriented Control System (DOOCS)
 - Architecture: Distributed client-server, combined with a device-oriented view
 - Transportation layer: Standardized, industrial RPC protocol
 - Implementation:
 - Server: C++
 - Client: C++, Java, Python or MATLAB
 - Device interface: Variety of fieldbus and hardware interfaces via device classes
 - Development history:
 - Started in 1993
 - Is constantly updated to meet the needs of users and keep pace with developments in IT technologies
 - Interoperability: Client API provides access to

e.g.

- EPICS (facility control system at DESY)
- TANGO (beamline control system at PETRA)

Graphical User Interfaces

- Java DOOCS Data Display (JDDD):
 - Tool of choice for the standard beam operation as well as operating technical accelerator devices and systems
 - Thin-client approach with a functional and rich set of widgets
 - Individual UI components can be easily created through a versatile editor IDE without the knowledge of any programming language
- Python:
 - Tool of choice for rapid prototyping and visualization of scientific procedures and data
- Progressive Web Apps (PWA):
 - Multi-platform, browser-based applications with a look-and-feel of versatile classical desktop applications
 - Based on React JavaScript framework
 - Under investigation

Go to overview slide

Hardware Interfaces

- Interfaces for Triggered, High-Performance Applications:
 - Compliant with <u>MTCA.4 technology</u>
 - Linux
 - Remotely manageable
 - Specific modules, e.g.
 - Timing:
 - Beamline experiments can make use of the same timing system hardware
 - Digital I/O:
 - e.g. for beam diagnostics / control
- Interfaces for Conventional Slow-Control Applications:
 - Compliant with industrial process control standards
 - Generic bridge server available for, e.g.:
 - OPC UA servers
 - Beckhoff controller
 - Classical PLC

Data Acquisition and Archiving

- *Implemention:* Domain-specific interface standards and technologies.
- Data:
 - Time series data:
 - Fast data streams in synchronism with the beam revolution frequency (130 kHz), e.g. single-turn orbit data
 - Slow data stream updated asynchronously with less than 100 Hz, e.g. multi-turn orbit data or magnet currents
 - Snapshot data:
 - Measured and stored once
 - Triggered by e.g. value changes, specific events, operator requests, ...
- Versatile visualization and analysis tools:
 - Particular emphasis will be placed on the capability to support data science applications (e.g. learning feedbacks, failure prediction)

Go to overview slide

High-Level Control Applications

- HLC Team:
 - Controls experts and accelerator physicists
 - Interfaces specific needs of beam commissioning and operations and implements corresponding tools and applications
- MATLAB Middle Layer Library Suite:
 - Supplemented by procedures developed for PETRAIII operation
 - Will be adapted for further use at PETRA IV
- Machine Learning:
 - Novel control concepts for PETRA IV are being developed and tested at PETRA III
- Virtual PETRA Accelerator:
 - Similar to Virtual European XFEL Accelerator
 - Will be used to test new concepts, enhancements or just modified and improved applications before they will be put into the field

Quality Assurance

- Quality Assurance Measures:
 - Issue and bug tracking workflow:
 - Existing workflow has been revised
 - Requirements Management:
 - Template has been worked out to document the requirements
 - Requirements will be regularly reviewed and adapted if needed
 - Training courses for application developers, e.g.:
 - Application software development, graphical user interface design, software testing etc.
- Configuration Management:
 - Includes all software and hardware components
 - During all stages of the PETRA IV life cycle
 - Implementation, e.g.
 - Configuration management data base
 - Well-defined workflows and processes for change and release management

Go to overview slide

Contact

DESY. Deutsches Elektronen-Synchrotron Reinhard Bacher reinhard.bacher@desy.de +49 40 8998 3056

www.desy.de