
RADIATION MONITORING ELECTRONICS (CROME)
K. Ceesay-Seitz†, H. Boukabache*, M. Leveneur, D. Perrin, CERN, Geneva, Switzerland

Abstract
The CERN RadiatiOn Monitoring Electronics

(CROME) are a modular safety system for radiation mon-
itoring that is remotely configurable through a supervisory
system via a custom protocol on top of a TCP/IP connec-
tion. The configuration parameters influence the safety de-
cisions taken by the system. An independent test library has
been developed in Python in order to test the system’s re-
action to misconfigurations. It is used to stress test the ap-
plication’s network interface and the robustness of the soft-
ware. The library is capable of creating packets with de-
fault values, autocompleting packets according to the pro-
tocol and it allows the construction of packets from raw
data. Malformed packets can be intentionally crafted and
the response of the application under test is checked for
protocol conformance. New test cases can be added to the
test case dictionary. Each time before a new version of the
communication library is released, the Python test library
is used for regression testing. The current test suite consists
of 251 automated test cases. Many application bugs could
be found and solved, which improved the reliability and
availability of the system.

INTRODUCTION
The Radiation Protection group within CERN is respon-

sible for measuring levels of ionizing radiation at the
CERN sites, experimental areas and in service caverns be-
sides the LHC experiments in order to ensure the radiolog-
ical safety of the persons on the CERN site as well as the
people living in its neighbourhood. The CERN RadiatiOn
Monitoring Electronics (CROME) have been developed
in-house with the purpose of replacing the older radiation
monitoring systems ARCON and RAMSES. In contrast to
the old systems, CROME consists of fully independent
units, called CROME Measurement and Processing Units
(CMPUs), which perform their safety functions autono-
mously [1]. A CMPU consists of a radiation detector,
which is an ionization chamber in most cases, a front-end
board for the readout and the processing unit. The latter has
at its core a Zynq-7000 System-on-Chip (SoC) with an em-
bedded Linux running on the Processing System (PS) with
integrated 32-bit ARM cores and a Programmable Logic
(PL) section. Because the PL can operate autonomously
and the design architecture is more immune to higher radi-
ation than the PS [2], all the safety critical calculations and
decision making are implemented inside the PL.

The CMPU’s functionality is entirely configurable at
runtime with roughly 150 parameters. This has the ad-
vantage that CROME can be deployed for very different
usage scenarios – e.g. in service caverns or experimental

areas with higher levels of radiation where it can be con-
figured to trigger visible and audible alarms and with the
possibility of being connected to machine interlocking sys-
tems, or as environmental monitors where the natural back-
ground radiation is monitored over long periods for infor-
mational purposes.

Figure 1 presents a system overview. During operation
the CMPUs are connected to a SCADA supervisory system
called REMUS – Radiation and Environment Monitoring
Unified Supervision [3]. The CMPUs on the one commu-
nication end and the REMUS servers on the other end use
the ROMULUS library [4] for communicating with each
other. The library implements a custom protocol on top of
TCP/IP that can be used to remotely configure the param-
eters on the CMPU at runtime, to read out its current and
historical status, and to receive real time as well as histori-
cal measurement values.

The remote parametrization via REMUS is the only ded-
icated mechanism for users to configure the behaviour of
the CROME system during operation. Radiation protection
experts use REMUS to configure the CMPUs correspond-
ing to the expected radiation conditions and safety require-
ments of a zone. Operators in the control room use REMUS
to monitor the status and measurement results sent by the
CMPUs.

Figure 1: CROME Overview.

Since it influences the functionality as well as the safety
function of the system, the communication mechanism
needs to be robust and reliable. The RomLibEmu, the
ROMULUS Library Emulation and Test Tool, has been
developed to test the functionality and robustness of the
ROMULUS library as well as of the CMPU’s application.

† katharina.ceesay-seitz@cern.ch
* hamza.boukabache@cern.ch

RomLibEmu: NETWORK INTERFACE STRESS TESTS FOR THE CERN

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEBR01

Functional Safety Systems for Machine Protection, Personnel Safety

WEBR01

581

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

The paper is structured as follows. First a definition for
robust systems and robustness testing is provided. Then the
RomLibEmu’s concepts and functionalities are described
in detail. Finally, the results and benefits obtained from us-
ing the tool are highlighted. A summary and an outlook
conclude the paper.

BACKGROUND AND RELATED WORK
A system is considered as robust when it shows stability

and acceptable behaviour in unforeseen operating condi-
tions. Furthermore, it must not accept invalid input and cer-
tainly must not produce faulty output if presented with un-
expected inputs. Rather it has to either reject the input or
put itself into a safe or degraded state from which it can
recover. Robustness is defined by the 610.12-1990 IEEE
standard glossary of software engineering as “the degree to
which a system or component can function correctly in the
presence of invalid inputs or stressful environmental con-
ditions”. The latter could be network traffic overload, at-
tacks or a misbehaving connected system [5]. It could also
be physical conditions such as extreme temperatures or
high radiation levels.

Robustness tests complement functional tests with test
cases that particularly focus on sending boundary values or
unexpected input values to a system with the goal of deter-
mining whether the system enters into an unwanted state
such as an abort or a non-responsive state[6]. Common
techniques for robustness testing are model-based tech-
niques, fault injection, fuzzing, interception, code changes
injection and mutation testing. Communication protocols
are often tested with model-based techniques where a
model is built from the specification which is then either
directly evaluated or used to generate test cases. The most
commonly used technique to evaluate the robustness of
embedded systems is fault injection [7]. RomLibEmu cur-
rently focuses mainly on fault injection. In future it might
be extended with model-based or fuzzing approaches.

The CRASH scale has been developed for classifying
the severity of failures of operating systems when tested
for robustness. CRASH stands for Catastrophic, Restart,
Abort, Silent, Hindering [8]. It is widely used to classify
robustness test results [7]. It was also adapted to classify
failures of controllers in self-adaptive systems. Similar to
our results the most common failure of the tested controller
fell into the “Silent” category [9].

Besides aiding in the classification of test results it also
provides a good guidance for scenarios that have to be
tested for. We reinterpreted the scale as Catastrophic, Re-
start, Abort, Silent/Safety, Hindering/Harmless.

RomLibEmu: ROMULUS LIBRARY
EMULATION AND TEST TOOL

Purpose and Motivation
As mentioned in the introduction, the network interface

is the only dedicated mechanism for configuring the
CROME Measurement and Processing Units (CMPUs)
during operation. The first parametrization can also be

done via the local file system, but this interface is only ac-
cessible to the development and maintenance team of
CROME. Further utility tools exist that have been devel-
oped for testing and diagnosis. A physical test case, called
CROME Case, that can read and manipulate external inter-
faces of the CMPU, has been developed as well. The tools
and the test kit use the ROMULUS library for communica-
tion via the network. The library is intended to construct
well-formed messages conforming to the ROMULUS-RE-
MUS communication protocol. It only allows to send val-
ues of the expected datatypes for parameters and it is not
capable of intentionally crafting malformed packets. While
this feature strengthens the communication mechanism
when the same library is used on both communication end
points, it prevents the usage of the library itself for testing
its own robustness and that of the CMPU application. The
RomLibEmu, the ROMULUS Library Emulation and Test
Tool, has been developed to overcome this limitation.

There are several scenarios in which it could happen that
unexpected messages or malformed packets are sent to a
CMPU:

• A fault in the ROMULUS library.
• A fault in the application that uses the ROMULUS li-

brary.
• The ROMULUS library versions of the CMPU appli-

cation and the REMUS server are incompatible.
• Bad network connection or unexpected termination of

the remote application causes ROMULUS packets to
arrive only partially.

• Network or user-level misconfiguration:
Packets that were not intended to be sent to the CMPU
reach it because of a network misconfiguration. The
application tries to interpret the irrelevant data accord-
ing to the ROMULUS-REMUS communication pro-
tocol.

• Intentional attacks against CROME

Robustness testing of the CMPU’s network interface is
crucial to increase the availability and reliability of the ra-
diation monitors. The availability would be affected by ap-
plication crashes or aborts due to unexpected network traf-
fic or heavy loads. The reliability would be affected if the
CMPU would accept input values which it cannot process
correctly. That could be e.g. input values that cause internal
overflows or divisions by zero. The expected functionality
of the CMPU would be affected if it would accept param-
eter values outside of the ranges defined in the require-
ments. These functional tests could be implemented by us-
ing the ROMULUS library itself. The already existing
tools were mainly intended for manual tests and diagnosis.
The RomLibEmu additionally facilitates the creation and
generation of automated functional and robustness test
suites. They can be used for automated regression testing
as well.

Capabilities
The RomLibEmu has been developed independently

from the ROMULUS library based on the protocol specifi-

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEBR01

WEBR01C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

582 Functional Safety Systems for Machine Protection, Personnel Safety

cation. Figure 2 shows an overview of the test setup. The
tool can be used to test any application software that uses
the ROMULUS C library or any other library or applica-
tion that implements the ROMULUS-REMUS communi-
cation protocol. The library provides functions for creating,
sending and receiving packets via TCP/IP. Packets can be
autocompleted to conform to the ROMULUS protocol or
they can be intentionally crafted to not or only partially
conform to the protocol. Further functions can interpret re-
ceived packets and check for unexpected responses.

 Figure 2: RomLibEmu Overview.

Metadata The protocol information is extracted from
the protocol definition document in a semi-automated
manner. The protocol consists of several different com-
mands with similar structures. Each of them is identified
by a unique command code and has a corresponding re-
sponse code. Depending on the command type either the
command or the response contains a list of parameters with
or without added ID and of specified data types. Each
packet further contains the data length, number of parame-
ters, an ID and a checksum [4]. The command and response
codes as well as the acknowledgement code for the mes-
sages have to be manually extracted from the documenta-
tion into a Python dictionary. The document contains sev-
eral tables that define the parameter names, IDs and data
types for the different messages. These need to be copied
into a CSV (comma-separated values) file. The metadata
generation scripts of the RomLibEmu reads the infor-
mation and generates metadata dictionaries which are
stored into dedicated files. These dictionaries can be used
to access the parameters by name or ID and retrieve the
corresponding data type byte size. The generated files are
included into the RomLibEmu library. In case different
protocol versions shall be tested, it is possible to use dif-
ferent input folders and include different dictionaries into
the library.

Test case generation – conforming packets The li-
brary can be used to create test cases either manually or
automatically. A test case can be specified as a dictionary
with the ROMULUS packet field names as keys and the
field’s data as values. All values need to be provided as
bytes in the correct byte order as described by the protocol.

Values like the command codes can be retrieved from the
generated dictionaries by their names. Several utility func-
tions are available to facilitate the test case construction in
a human readable form. The “DATA” field expects as
value a dictionary that contains key-value pairs with the
name of a parameter as key and its data as value. The pa-
rameter ID that will be placed into the protocol message is
automatically determined from the metadata. Since the ID
depends on the command type (there could be multiple pa-
rameters with the same name but different ID for different
command types), a command code needs to be specified in
the test case. In order to create a conforming packet, the ID,
command code, number of parameters and the data need to
be specified. The RomLibEmu then calculates the data
length and the checksum and places them into the ROMU-
LUS packet.

A test case also contains the expected response by the
CMPU under test. The expected acknowledgement code
depends on the test scenario and must therefore be added
manually. In most cases the expected data values are only
known for parameters and not for sensor measurements
like the radiation dose or temperatures. In some test cases
they can be added to the expected response packet. It is
possible to add place holders for data values that cannot be
automatically checked. Several fields of the expected re-
sponse can be automatically determined by the Rom-
LibEmu. The sender ID, the command’s response code, the
expected number of parameters and the data length can be
generated. The checksum of the response packet can be
calculated only if the expected data was known.

Test case generation – non-conforming packets
Raw data can be inserted by adding a key that starts with
the keyword “raw” and any data as value. These fields can
be used to craft invalid packets. The default value of each
field is an empty string. It is the responsibility of the test
case writer to decide whether the lengths of the fields
should match the ROMULUS-REMUS communication
protocol for conforming packets or whether a non-con-
forming packet shall be created. In order to construct a
packet manually it is possible to add the whole packet as a
byte string to one of the fields of the packet and leave all
other fields empty. Packets can also be modified after auto
completion to facilitate the generation of malformed pack-
ets.

Use case The main purpose of the RomLibEmu is to
facilitate the creation of automated test suits. Test cases can
be defined in a test case dictionary. The RomLibEmu pro-
vides a function that traverses this dictionary and sends
each packet over a TCP/IP socket to the target device. After
sending a packet it waits for the response and compares it
with the expected one that was defined in the test case. This
verifies the ROMULUS packet structure which tests the
ROMULUS library implementation as well as the content
of the packet which tests the software application that uses
the library. Automated test suits can be used fully or par-
tially in regression test runs which are performed whenever
a new software version is available.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEBR01

Functional Safety Systems for Machine Protection, Personnel Safety

WEBR01

583

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

The functions of the RomLibEmu can also be used to
freely create more complex functional test cases that con-
sist of several ROMULUS commands. Scenarios that al-
ready lead to failures of the system can be reconstructed
for analysis. Once the underlying fault has been removed,
the same test case can be used in regression runs. The li-
brary can also be used by developers for test-driven devel-
opment.

RESULTS
A test plan has been written containing around 80 main

test cases which consist of several sub test cases. They are
associated to the following categories:

1. Good cases – Packets that conform to the ROMU-
LUS-REMUS communication protocol.

2. Application tests – Packets with correct ROMULUS
packet structure, but bad parameter configuration.

3. Bad network connection – Simulating the loss of
packets, long delay, etc.

4. ROMULUS library tests – Malformed ROMULUS
packets that were generated due to bugs in the
ROMULUS library; Network packets that were not
targeted to the CMPU but arrive because of miscon-
figuration and are therefore treated by the applica-
tion like legitimate traffic.

5. Denial-of-Service – Overload of the network inter-
face by sending too many messages in a short time
or in parallel, unexpectedly long packets.

6. Intentional attacks
7. Regression tests – Test cases that have already re-

vealed a bug in some version of the application or
the ROMULUS library

The responses of the CMPU’s application can be classi-
fied according to the CRASH scale [8] as follows:

• Catastrophic – The OS crashes.
• Restart – Application hangs and requires a restart.
• Abort – The application crashes.
• Silent/Safety – An application error is expected but

does not get triggered.
• Hindering/Harmless – The application returns a

wrong error code.

Each time before a new software or firmware version is
released, the test suite implemented with the RomLibEmu
is executed. Table 1 lists the failures of the test runs per
CRASH category. The robustness and in particular the
availability of the CMPU was tested by trying to cause a
“Catastrophic”, “Restart” or “Abort” scenario. No test sce-
nario fell into the “Catastrophic” category. One test case
caused the application to hang and four test cases caused
the application to crash, falling into the “Abort” category.
“Silent” faults are very critical for safety, therefore we re-
named the category into “Silent/Safety”. These are scenar-
ios in which the application would accept bad input that it
cannot handle and it would not notify the user. In such sce-
narios one would rely on a faulty safety system in the belief
that it is operating as specified, which could be very dan-
gerous. The faults falling into the “Hindering/Harmless”
category were not considered as critical. They are wrong

behaviour from a functional perspective, but from a safety
perspective in the case of the CMPU it is sufficient if any
error code is returned and bad input is rejected. For another
system, however, these faults may be critical. We also
added a category “Functional” which contains test cases
that failed because the response of the system did not fully
conform to the protocol, but the error code was the ex-
pected one. From safety perspective they are not critical
either.

The following test cases lead to “Abort” responses,
meaning that the application crashed. (The numbers in
brackets following each paragraph are the test case catego-
ries):

• A floating point parameter was set to quiet NaN (Not
a Number).
The ROMULUS library is not supposed to accept
NaNs, therefore this tested the library implementation
as well. Interestingly a test case with a signalling NaN
passed. (2, 4, 6)

• An Ethernet frame with maximum data length was
sent. The length of the IP header plus the length of the
TCP header plus the length of the data equalled the
Ethernet MTU of 1500. The TCP data was all 0. A
similar test case where the TCP data contained ar-
bitrary data, but the data length specified in the packet
matched the maximum legal data length and the
ROMULUS packet checksum was correct passed. (4,
6, 7)

• A packet with arbitrary data in the TCP data section
with a packet length larger than the maximum ROM-
ULUS packet length was sent. The data length inside
the packet was set to 0 and the packet had a wrong
checksum. (4, 6, 7)

• Many commands were sent in parallel. (2, 4, 5, 6)

Some examples of “Silent/Safety” failures were:
• Negative/positive infinites as well as quiet and signal-

ling NaNs were sent to floating point parameters. The
values were accepted and passed on to the PL that con-
tains the safety critical code. (2, 4, 6)

• Invalid packet structures were accepted. The applica-
tion therefore treated frame data like the checksum as
parameter data and stored it silently. (2, 4, 6)

Table 2 summarizes the test runs. With each run some
faults were removed and some more test cases were added.
The number of passing test cases increased with each im-
proved software version. In some intermediate test runs,
however, previously passing test cases failed due to regres-
sions that were introduced into the software or the firm-
ware of the PL. Thanks to the test suite this could be spot-
ted and fixed before releasing the new software and firm-
ware versions.

CONCLUSION AND OUTLOOK
The RomLibEmu tool has been developed to test the ro-

bustness of the ROMULUS library as well as the CMPU’s
application that uses the library. It was successfully used

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEBR01

WEBR01C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

584 Functional Safety Systems for Machine Protection, Personnel Safety

Table 1: Failures per CRASH Category
Test
Run

Date
of
SW

Si-
lent/
Safet

y

Abo
rt

Re-
start

Hin-
der-
ing

Func
tiona

l

1 04/09
/19

19 2 1 3 2

2 11/12
/19

10 4 0 3 2

3 20/12
/19

6 0 0 3 2

4 26/05
/20

6 0 0 3 3

5 02/03
/21

2 0 0 3 2

6 30/09
/21

0 0 0 3 0

Table 2: Test Run Summary

Test
Run

Date
of
SW

Nr. Test
Cases

Passed Failed

1 04/09/
19

57 30 27

2 11/12/
19

58 39 19

3 20/12/
19

64 53 11

4 26/05/
20

65 53 12

5 02/03/
21

81 74 7

6 30/09/
21

83 80 3

Many of the main test cases consist of several sub cases.
In total the current test suite contains 251 test cases.

for finding faults triggered by unexpected parameter values
or malformed ROMULUS packets. It has been further used
to test the input sanitizing module which performs param-
eter range checks once when receiving parameters over the
network or reading them from the file system as well as
once before writing derived values to the Programmable
Logic section of the SoC. A few test cases have already
been written that test functionalities of the full system cov-
ering PS and PL sections of the SoC.

This test bench clearly improved the quality, availability
and safety of the CROME Measuring and Processing Units.
So far the test bench focuses only on a small section of the
functionality and on the communication interface. In future
version we intend to extend the tool to further facilitate the
test case generation for functional and safety tests. More
benefits are expected from a more comprehensive test suite.
There is also room for more automation. Model-based test-
ing may be done by adding the capability of generating ran-
dom input values and by adding an interface to a reference

model of the system that predicts the expected outputs. Fur-
thermore the tool may be combined with fuzz testing tools
or modules with focus on network security.

REFERENCES
[1] H. Boukabache, M. Pangallo, G. Ducos, N. Cardines, A. Bel-

lotta, C. Toner, D. Perrin, and D. Forkel-Wirth, “TOWARDS A
NOVEL MODULAR ARCHITECTURE FOR CERN RADIA-
TION MONITORING”, Radiation Protection Dosimetry, vol.
173, April 2017, pp. 240–244. doi:10.1093/rpd/ncw308

[2] C. Toner, H. Boukabache, G. Ducos, M. Pangallo, S. Danzeca,
M. Widorski, S. Roesler, and D. Perrin, “Fault resilient FPGA
design for 28 nm ZYNQ system-on-chip based radiation mon-
itoring system at CERN”, in Microelectronics Reliability,
vols. 100–101, p. 113492, 2019. doi:10.1016/j.microrel.
2019.113492

[3] A. Ledeul, G. Segura Millan, A. Savulescu, B. Styczen, and
D. Vasques Ribeira, “CERN Supervision, Control and Data
Acquisition System for Radiation and Environmental Pro-
tection”, in Proc. 12th International Workshop on Personal
Computers and Particle Accelerator Controls (PCaPAC’18),
Hsinchu City, Taiwan, Rep. of China, 2018, pp. 248-252.
doi:0.18429/JACoW-PCaPAC2018-FRCC3

[4] A. Yadav, H. Boukabache, K. Ceesay-Seitz, and D. Per-
rin, “ROMULUSlib: An autonomous, TCP/IP-based, multi-
architecture C networking library for DAQ and Control ap-
plications”, presented at 18th Int. Conf. on Accelerator and
Large Experimental Physics Control Systems (ICALEPCS’21),
Shanghai, China, Oct. 2021, paper MOBR01, this conference.

[5] S. Shah, D. Sundmark, B. Lindström, and S. Andler, “Robust-
ness Testing of Embedded Software Systems: An Industrial
Interview Study”, in IEEE Access, vol. 4, pp. 1859-1871, 2016.
doi:10.1109/ACCESS.2016.2544951

[6] C. Hutchison et al., “Robustness Testing of Autonomy Soft-
ware”, 2018 IEEE/ACM 40th International Conference on Soft-
ware Engineering: Software Engineering in Practice Track
(ICSE-SEIP), 2018, pp. 276-285. doi:10.1145/3183519.
3183534

[7] N. Laranjeiro, J. Agnelo, and J. Bernardino, “A Systematic
Review on Software Robustness Assessment”, ACM Comput-
ing Surveys, vol. 54, issue 4, nr. 89, pp. 1-65, 2021. doi:
10.1145/3448977

[8] P. Koopman, J. Sung, C. Dingman, D. Siewiorek, and T. Marz,
“Comparing operating systems using robustness benchmarks”,
Proceedings of SRDS’97: 16th IEEE Symposium on Reliable
Distributed Systems, 1997, pp. 72-79. doi:10.1109/RELDIS.
1997.632800

[9] J. Camara, R. de Lemos, N. Laranjeiro, R. Ventura, and M.
Vieira, “Robustness Evaluation of Controllers in Self-Adaptive
Software Systems”, 2013 Sixth Latin-American Symposium
on Dependable Computing, 2013, pp. 1-10. doi:10.1109/
LADC.2013.17

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEBR01

Functional Safety Systems for Machine Protection, Personnel Safety

WEBR01

585

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

