
PROTOTYPE OF IMAGE ACQUISITION AND STORAGE SYSTEM FOR
SHINE*

Huihui Lv, Huan Zhao†, Danping Bai, Xiaomin Liu
Shanghai Advanced Research Institute, Chinese Academy of Sciences

201204 Shanghai, P.R. China

Abstract
Shanghai HIgh repetition rate XFEL aNd Extreme light

facility (SHINE) is a quasi-continuous wave hard X-ray
free electron laser facility, which is currently under
construction. The image acquisition and storage system
has been designed to handle a large quantity of image data
generated by the beam and X-ray diagnostics system, the
laser system, etc. A prototype system with Camera Link
cameras has been developed to acquire and to reliably
transport data at a throughput of 1000MB/sec. The image
data are transferred through ZeroMQ protocol to the
storage where the image data and the relevant metadata
are archived and made available for user analysis. For
high-speed frames of image data storage, optimized
schema is identified by comparing and testing four
schemas. The image data are written to HDF5 files and
the metadata pertaining to the image are stored in NoSQL
database. It could deliver up to 1.2GB/sec storage speed.
The performances are also contrasted between a stand-
alone server and the Lustre file system. And the Lustre
could provide a better performance. Details of the image
acquisition, transfer, and storage schemas will be
described in the paper.

INTRODUCTION
Motivated by the successful operation of X-ray FEL

facilities worldwide and the great breakthroughs in atomic,
molecular, and optical physics, condensed matter physics,
matter in extreme conditions, chemistry and biology, the
first hard X-ray FEL light source in China, the so called
Shanghai HIgh repetition rate XFEL aNd Extreme light
facility (SHINE), is under construction. SHINE will
utilize a photocathode electron gun combined with the
superconducting Linac to produce 8 GeV FEL quality
electron beams with 1 MHz repetition rate [1].
A myriad of image data will be generated by the beam

monitor system, the optical diagnostics system and the
laser system, providing the required parameters for the
accelerator operation and physics research. In order to
measure the laser accurately, CCD cameras in the optical
diagnostic system capture images at high speed. In
addition, the beam cross section measured by the seed
laser system and the drive laser system provides the basis
for the commissioning and adjusting the devices ’
parameters. Thus the accelerator has need of an efficient
data acquisition and storage framework to accommodate
the high-speed frames of image data, which is of great

value to engineers and physicists to identify errors,
component deterioration, poor process optimization, etc.
They can also be used for big data analysis to improve
control system stability and efficiency, and reduce
maintenance cost. We have designed a general image
system which is less expensive, using regular commercial
hardware. It could acquire, transmit, and store the images
at the speed of 1000MB/sec. The relevant tools are also
developed to retrieve and display images on real time.
Details are described in the following sections.

ARCHITECTURE
The whole system as shown in Fig. 1 can be divided

into five functional modules, namely acquisition,
transmission, storage, retrieval and online display.

Figure 1: System Architecture.
Two CCD cameras with Camera Link interfaces take

images at speed of 120 frames per second. One camera is
directly connected to Camera Link Frame Grabber
through a cable, while the other is connected to Camera
Link Range Extender over a fiber cable, that solves
distance limitation of Camera Link. Images are processed
and packaged by the acquisition server and then
transmitted to the storage server and online-display server
through 10 Gigabit Ethernet, using ZeroMQ protocol for
communication. After the storage server receives the data
stream, it first unpacks it, then saves the image data in
files as HDF5 format, and the metadata organized to
facilitate searchability in MongoDB database. The web-
based retrieval system is based on standard J2EE(Java 2
Platform, Enterprise Edition) Glassfish platform. It is
designed to handle remote queries for historical records.

* Work supported by Shanghai Municipal Science and Technology Major
Project(Grant No. 2017SHZDZX02)
† zhaohuan@zjlab.org.cn

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEBL02

WEBL02C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

564 Data Management

The online display server can display the images captured
from two cameras in real time.

Acquisition Module
There are three commonly used camera interfaces as

shown in Table 1.
Table 1: Camera Interfaces Comparison

Interface Performance

GigE slower speeds, 100m cable length
Camera
Link

5.4Gbps, short cable length, cost
effective

CoaXPress 6.25Gbps, short cable length,
expensive

GigE is usually used in systems with less critical speed
and timing demands. Camera Link offers higher link
speed up to 5.6 Gb/s (Gigabits per second), but cable
length is limited and cable cost is a bit high. CoaXPress
supports the transfer rate up to 6.25Gb/s, and it is more
expensive than Camera Link. Taking cost and
performance into consideration, we choose Camera Link
and utilize a fiber optic range extender to resolve distance
limitation by connecting camera to frame grabber over
single fiber cable.

Figure 2: Camera Link Connection.
There are two cameras taking pictures at the same

time. One is directly connected to Camera Link Frame
Grabber through CL cable that is about 10 meters. The
other is connected to CL Range Extender over single fiber
cable that solves distance limitation of Camera Link. As
shown in Fig. 2, the system is constructed of two
converters, one on the camera side and one on the Camera
Link frame grabber side. Camera Link Frame Grabber is a
PCI Express-based device which allows high bandwidth
communication between the device and the
motherboard/server. The models of all devices are as
shown in Table 2.
We use C language /Matrox Imaging Library(MIL) to

develop programs for image capture, processing and
annotation. MIL software development kit (SDK) is
designed to reduce time and effort required to bring
solutions. However, MIL SDK is mainly developed and
utilized for Windows OS and has little support for Linux.
It even cannot be installed in Linux. In order to install and
use it in Linux, we tried multiple Linux versions, e.g.,

CentOS, Debian and Ubuntu. And finally we found
Ubuntu 14.04 could match MATROXAPI.

Table 2: Devices List
Device Name Performance Number

CCD Camera JAI SP-5000M-PMCL 2
Range
Extender

Kaya Camralink Range
Extender

2

Frame Grabber Matrox_RAD EV 1G
CLSF

2

CL cable 4
SFP module 2

Transmission Module
We make use of ZeroMQ[2] for image communication.

ZeroMQ is a high-performance asynchronous messaging
library, aimed at use in concurrent applications. ZeroMQ
supports common messaging patterns (e.g., pub/sub,
request/reply, client/server) over a variety of transports
(e.g., TCP, in-process, inter-process, multicast and more),
making inter-process messaging as simple as inter-thread
messaging. We use pub/sub and request/reply patterns
through TCP channels in the application.

Figure 3: ZeroMQ Communication.
As shown in Fig. 3, request/reply connects the online

display server (client) to the acquisition server (service),
implementing the handshaking which should be
successful before the transfer of data. Request/reply
depends on a fixed send -> recv / recv ->send sequence.
The connection will be interrupted if the sender does not
receive the answer. Thus we modified two configuration
parameters to realize that even if the sender does not
receive a reply, it can continue to ask until the handshake
is successful. The other two connections of acquisition
server/storage server and display server/storage server are
the same. Every two servers must shake hands to ensure
the transmission synchronously.
Publish/subscribe connects the acquisition server and

display/storage server. The publish-subscribe pattern is
used for one-to-many distribution of data from a single
publisher to multiple subscribers in a fan out fashion.
Unlike request/reply pattern, messages are sent directly to
the two servers, without the knowledge of what or if any
subscriber of that knowledge exists. We use pub/sub
pattern to transmit the stream of image data, allowing two
clients to consume the stream.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEBL02

Data Management

WEBL02

565

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

In order to get high transmitting speed,we modify the
parameters of the ten gigabit network switch and servers,
making multiple parameters match each other. After the
modification, the transmission speed increases from
500MB/sec to 600MB/sec. To further increase the speed,
we bind two network interfaces into a single logical
‘bonded’ interface as shown in Fig. 4. Network bonding
increases the network throughout and bandwidth.
Whereas network bonding increases CPU consumption
and reduces overall performance. So we use two networks
logically and in our program, data are transmitted through
two networks at the same time. The total transmission
speed increases to 1200MB/sec. That could satisfy our
need.

Figure 4: Network Bonding.

Storage Module
The image data represents an image, while the metadata

pertaining to the image includes details relevant to the
image itself as well as information about its production.
What ’ s more, the metadata is organized to facilitate
searchability [3].
The image metadata involves:
 Number of the camera capturing the image
 Timestamp to the millisecond
 IP address
 Port number
 The camera resolution
 The depth of every pixels of the camera
 The gain of the camera
 The exposure time
We have designed four schemas for storage.
Storage Schema 1
The image data itself and the metadata are both stored

in MongoDB. The image data is stored as a 2-D array of
8-bit unsigned integers.
Storage Schema 2
We make use of HDF5 as the permanent storage to

store the image data, while using MongoDB as the index
to store the metadata. The path where the image is stored
is managed by MongoDB and used as the index to
retrieve the HDF5 file.
Storage Schema 3
MongoDB is replaced by Cassandra.The metadata is

stored in Cassandra as the index and the image data is
stored as HDF5 format.
Storage Schema 4
Similar to Schema 2, we use DIRECT CHUNK WRITE

strategy to write the data to HDF5 files. Others are same.
The storage performance is tested using three different

sizes of gray level image, 1024×1024 bytes (1 MB),1024

× 2048 bytes (2 MB) and 2048 × 2048 bytes (4 MB),
respectively. For each image, we record the time
consumed to store 100 frames, 200 frames, 300 frames,
400 frames and 500 frames of images. The testing is
performed in a rack-mounted server with 512 GB of
RAM and 960 GB of SSD hard disk, running
Linux/CentOS 7 operating system. There are 2 physical
CPUs and each CPU has 6 cores in the server.
The test program is written to perform the same store

operation 50 times constantly. Then we calculate the
storage speed in MB/sec. The mean value with error bars
is displayed in Fig. 5. The number of frames is on the x
axis. The y axis corresponds to the storage speed in
MB/sec. The image size is given on the bar. For instance,
1 M represents the image of 1024 × 1024 pixels (width:
1024, height: 1024) and each pixel is represented by a
byte (8 bits).

Figure 5:Test Results of Four Storage Schemas.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEBL02

WEBL02C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

566 Data Management

As we can derive from Fig. 5, to use MongoDB to
store the metadata and HDF5 DIRECT CHUNK WRITE
to store image data provides the optimal storage
performance, about 1200MB/sec. It seems to be difficult
to increase the speed from the software design. So as to
achieve a higher storage speed, we can consider to extend
the hardware. However, the cluster provided by several
servers could deliver a combined throughput. If we stream
the image data to a cluster, it is likely to further improve
the storage speed. Consequently, we use three servers to
deploy a Lustre file system. There are a single metadata
target (MDT) and two object storage targets (OST). MDT
holds metadata information, which is stored separately
from file object data. The data content is written to OSTs
to persistent storage. Meanwhile, we configure two clients
mounting to the Lustre file system using the 10 gigabit
network protocol. The image storage performance is
tested in the cluster. And we calculate the sum of the
storage speed from two storage processes. It is about
1500MB/sec. The result shows that the cluster provides
more optimal performance than the stand-alone server.
While the Lustre in the test is a small scale distributed file
system, which is composed of three servers mounted by
two clients. The Lustre system can scale to large scale
platforms provided by more servers, and present larger
capacity storage space to more clients. Then we can
obtain superior combined throughput performance. If
there is higher requirement of data storage speed, the
Lustre file system could scale easily in the future.

Retrieval Module
The retrieval system is based on Maven J2EE Glassfish

platform with MongoDB and HDF5 utilized as backend
data storage. As shown in Fig. 6, the application
architecture diagram is composed by three parts: the
persistence layer, the business logic layer and the client
layer. The persistence layer is a general data storage
container for both metadata and image data. The business
logic refers to the processing demand to the data carried
by the specific client. Data APIs are predefined database
queries to facilitate application programming, which
provides convenient access to the database. Data APIs use
JDBC Connector to connect to MongoDB database to get
a specific image’s timestamp, cameroNo, index, etc. With
index to HDF5 files, it uses Java HDF5 Interface (JHI5)[4]
to access the image in HDF5 format. HTTPServlets
process demand to the data carried by the web client and
return data in JSON format. The client layer utilizes
HTML5 Canvas to draw the pixel-level image, Bootstrap
to style response websites and jQuery to handle the event
handling and Ajax.

Figure 6: Retrieval Module Architecture.

Online Display Module
The online display module (Fig. 7) makes use of

PyDM[5] to build graphic user interface. The image data
transmitted through ZeroMQ protocol from the
acquisition server are imported to the EPICS database
located in the display server by PCASpy[6] interface. The
total number of image frames acquired from the
acquisition server is also displayed on this interface,
compared with the number of images having been stored
into the storage server (as shown in Fig. 8). The two are
equal and it can indicate that there is no packet lost.

Figure 7: Online Display Module.

Figure 8: Online Display Interface.

TESTING
Test is taken by two cameras (120frames/sec,

1024*1024) illuminated by a diode which is excited by a
sine wave signal generator as shown in Fig. 9. According
to all images from one camera within two seconds, we
find the brightest point of each image, the point with the
largest gray value. Then we fit a sine curve using the
least-squares method. The curve is shown in Fig. 10. The
fitting frequency is equal to the frequency of the signal
generator.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEBL02

Data Management

WEBL02

567

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Figure 9: Testing.

Figure 10: Fitting Curve.
We also test the performance of a higher speed, 1000

frames/sec with each image size 1MB. We monitor the
number of HDF5 files generated every 5 seconds by
Linux command ‘watch -n 5 "ls |wc -l |tee -a num.log"’.
The result is shown in Fig. 11. Then the storage speed
could be calculated, 500MB * 10 / 5sec = 1000 MB/sec. It
shows that our system can get the speed of 1000MB/sec.

Figure 11: Test Results of 1000 Frames/sec.

CONCLUSION
The system is able to acquire, transmit and store the

image data at speed of 1000MB/sec stably without loss.
The solution is based on Camera Link interface to capture
high-frame rate images, ZeroMQ protocol to transmit
stream data, together with HDF5 to store the heavy image
data and MongoDB for indexing the heavy data in HDF5.
Multi-threading and network binding increases the
holistic system performance as well. The hardware
architecture and software design is not limited to image
data. It could also manipulate the waveform data for
SHINE.

REFERENCES
[1] Kai Li, Haixiao Deng, “Systematic design and three-

dimensional simulation of X-ray FEL oscillator for
Shanghai coherent light facility”, Nucl. Instrum. Methods,
vol. 895, pp. 40–47, 2018.
doi:10.1016/j.nima.2018.03.072

[2] https://zeromq.org/

[3] Lv H., Yan Y., Wang H., “The data storage system for
SHINE”, Nucl. Instrum. Methods, vol. 1002, 2021.
doi: 10.1016/J.NIMA.2021.165285

[4] https://www.hdfgroup.org/

[5] http://slaclab.github.io/pydm/

[6] https://pypi.org/project/pcaspy/

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEBL02

WEBL02C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

568 Data Management

