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Abstract 

In order to carry out complex tasks on particle accelera-
tors, physicists and operators need to know the correct se-
quence of actions usually performed through a large num-
ber of graphical panels. The automation logics often em-
bedded in the GUIs prevents its reuse by other programs, 
thus limiting the level of automation a control system can 
achieve. In order to overcome this limit, we have intro-
duced a new automation framework for shifting the logics 
from GUIs to server side, where simple tasks can be easily 
organized, inspected and stacked up to build more complex 
actions. This tool is based on Behavior Trees (BT) which 
has been recently adopted in the gaming industry for in-
game AI player opponents. They are able to create very 
complex tasks composed by simple decoupled self-con-
tained tasks (nodes), regardless how they are implemented. 
The automation framework has been deployed in the 
Tango-based control systems of Elettra and FERMI to im-
plement autonomous operations. A dedicated Qt GUI and 
a web interface allow to inspect the BTs and dynamically 
go through a tree, visualize the dependencies, monitor the 
execution and display any running action. 

 

INTRODUCTION 
In Elettra and FERMI, a synchrotron light source and a 

free electron laser located in Italy, it is usual for control 
room operators or physicists to manually perform long se-
quences of operations to configure the accelerators in the 
desired state. These procedures are prone to errors and 
heavily dependent on the skills of the operators. Over time, 
many institutes have developed frameworks to automate 
these lengthy procedures [1,2,3,4]. Therefore, the frame-
work we are going to present in this article is not an abso-
lute novelty.  

To be successful a framework must be easy to use, robust 
and adopted by as many people as possible. These concepts 
were the basis for the development of this new framework. 
The originality lies in inheriting the modularity, flexibility 
and robustness of the Behavior Trees (BT). 

Behavior Trees 
BTs are very efficient in modelling what an Artificial In-

telligence (AI) algorithm can do. They allow designers to 
define very low-level tasks and combine them to create the 
set of high-level tasks that the developer wants available to 
the AI application.  

The Behavior Tree is a directed rooted node tree where 
the internal nodes are called “control flow nodes” and leaf 
nodes are called “execution nodes” (see Fig. 1). Briefly, the 
execution flow starts from a root node and go through the 
tree down to the leaves. The main control flow node is the 
sequence node that can run in parallel or in series to other 
sequence nodes or action nodes. An action node executes 
a task and returns to its parent a success, running or failure 
state. The sequence node returns success to its own parent 
if all its children return success. The sequence node can be 
configured as fallback node to return success when at least 
one of its children return success. A condition node returns 
success or failure depending on the evaluating condition. A 
decorator node can invert a failure state into success and 
vice-versa. 

There is no canonical implementation of BTs.  
They are very flexible and suitable to be customized for 
any application, whether it is an AI algorithm in a computer 
game [5] or in an Unmanned Aerial Vehicle [6].  

Each node executes an instruction after receiving a tick 
from its parent. In our implementation this aspect has been 
neglected. The Action node start to executes the task at the 
first tick and completes procedure detached from any ex-
ternal timing signal. 

 
Figure 1: Example of Behavior Tree structure. 

THE SEQUENCER 
A sequencer (corresponding to a node of the BT) is a 

Tango device. The core of the sequencer is the sequence 
which is written in a basic homemade language that has to 
implement the operations that are performed manually by 
operators. The language implements macros containing 
if/else conditions and read/set instructions, and support 
basic arithmetic and bitwise operations. 
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The sequence is stored in the sequencer Tango device 
property or in a text file (see Fig.2). The loading of the se-
quence is carried out during the Tango device initialization. 
After that, the sequencer device executes the sequence im-
mediately or when a start command is received.  

 
Figure 2: Sequencer device architecture.  

The Tango server executes the sequence instructions 
(commands and read/write attributes) row by row. Each 
row is identified by a step number (see Fig. 3). For each 
step a mandatory goto statement specifies the next step to 
execute. The sequence ends after evaluating the last step or 
can last forever. 

The sequencer states are: 
• OFF: sequencer is not running (success state) 
• RUNNING: sequencer is executing the sequence code 
• FAULT: sequencer has terminated due to an exception 
• WARNING: sequence parsing error 
• STANDBY: the sequence is paused 

Internal Variables 
The sequence can instantiate internal variables (ex: a 

loop counter, a threshold, …) which are dynamically 
mapped into read/write attributes. For simplicity the attrib-
ute types are bool, int32, int64 and double, and can support 
vectors and images.  

Stop Conditions and Exceptions 
The sequence stops after receiving an abort or stop com-

mand. While the abort command halts the sequence imme-
diately, the stop command lets the sequence terminate the 
running step. In both cases the sequence ends in OFF state, 
which means success. 

The sequence can be paused upon receipt of the pause 
command or can execute a single step specified in the goto 
command. 

The instruction goto(-1) generates an internal exception 
that stops the sequence in FAULT state. The goto(N+1) in-
struction, where N is the last step number, terminates the 
sequence in OFF state. 

There are four types of exceptions.  
• syntax exception: it occurs during the sequence loading 

process in case of a syntax error. The sequencer state 
turns into ALARM and it cannot be restarted. The sta-
tus attribute returns the part of the sequence containing 
the syntax error.  

• global timeout exception:  the sequence execution time 
takes more than the global timeout; the sequence ends 
and the device state is set to FAULT. 

• step timeout exception: the step execution time takes 
more than its timeout; the sequence stops and the 
Tango device state changes to FAULT. 

• Tango exception: when a Tango exception occurs in a 
command or read/write attribute, the sequence is im-
mediately stopped and the sequence state is set to 
FAULT. Tango exceptions can be ignored; in this case 
all if/else statements involving Tango read attributes 
are evaluated as true. 

Tango and step timeout exceptions can be caught and the 
execution flow redirected to a specific step. Similarly, the 
Stop command can be intercepted by the sequencer engine 
that, instead of ending the sequence, jumps to a predefined 
“exit” step. 

The sequencer can be configured to have its error recog-
nized by the operator. In this case the sequencer requires an 
acknowledge command before receiving a new start com-
mand.

 
Figure 3: Description of the sequencer scripting language. Each code line is composed at least by 5 fields: step index, 
logical expression, step description, error message and timeout. The catch exception field is optional. The if/else statement 
is implemented with the ternary conditional operator (? :). 
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Logging 
The sequencer device implements data logging on two 

levels: 
• high resolution buffer: a circular buffer of 10000 en-

tries records every instruction executed inside the se-
quence, any value read or set, and any error or condi-
tional jump with microsecond resolution. It is mostly 
used by developers during the sequence debugging 
and, in the near future, analysed by software bots for 
malfunction prediction.  

• Long-term buffer: in order to record any modification 
on machine parameters, each sequencer can store all 
executed Tango commands and written attributes in a 
circular buffer of 100000 entries. 

The description and error messages encoded in each se-
quence step are also stored in the long-term buffer. 

Currently both buffers are reset after device reinitializa-
tion. 

Additional Info 
In the header of the sequence code it is possible to spec-

ify a description of the sequence, the author and the release 
date. 

The sequence device returns the last execution time, the 
elapsed time from the start, the remaining time till the 
global timeout and, in case of exception, the last faulty 
step. Moreover, during sequence execution, the description 
of the running step is pushed by the sequencer to any event 
subscriber.  

In order to trace dependency between sequence devices, 
each device returns separately the list of the sequence de-
vices and the list of other Tango devices to which it is con-
nected. This information is useful for monitoring, at a 
higher (client) level, that the BT respects a Directed Acy-
clic Graphs (DAG) structure. In fact, no loops are allowed 
between parent nodes (ex: the root node) and the child 
nodes.  

Templates 
In order reuse the same sequence, the concept of tem-

plate has been introduced. After loading the template from 
file and before checking its syntax, the Tango sequencer 
engine replaces keywords with the strings specified in a de-
vice property called wildcards. The replacing strings are 
usually Tango device names or constant values.  

About fifty templates are available for sequencer devel-
opers. Some of them execute specific tasks (ex. recovering 
a faulty plant), other implement BT flow control, generic 
algorithms as scans/ramps, basic optimization algorithms 
(Extremum Seeking, Golden Search) or save/restore pro-
cedures. The most used template is the launcher. It is the 
main building block of the BT as it implements both a se-
quencer and fallback node. 

The launcher can start up to 64 sub-sequences. Through 
the use of bit-masks (r/w attributes) it can select groups of 
sub-sequences:  
• to be launched in series and/or parallel. 

• to be restarted after a fault for a maximum number of 
times. 

• to be ignored if producing errors and continue in 
launching the remaining sub-sequences.  

• to be stopped at the first fault and abort the launch of 
the remaining sub-sequences. 

Furthermore, a per sequence boolean attribute ena-
bles/disable its execution at runtime.  

After all sub-sequences have been executed successfully, 
the launcher stops in OFF (or FAULT in case of errors) and 
its state is acquired by the parent node. When a launcher is 
going to terminate in FAULT state, it is possible to execute, 
as the last running sequence, a rollback sub-sequence. 

Sometimes it is useful to stop, pause or abort the execu-
tion of an entire BT. In order to do so, the launcher se-
quencer, if explicitly enabled, can propagate all received 
commands directly to all child nodes. 

Naming and Database Configuration 
In the Tango database the naming of the sequences fol-

lows the rule:  
seq/[action]/[detailed_description]_[where] 
As example, the naming of a sequence which performs 

the power-cycling and communication recovery with a 
CCD in the Elettra booster is: 

seq/reset/ccd_b1.1 
Similarly, the sequence calculating the global orbit feed-

back response matrix in the storage ring is: 
seq/calc/gof_rm_sr 
A global free property in the Tango database called se-

quencer contains several sub-properties, each one contain-
ing a list of root sequence devices grouped by usage. For 
the Elettra storage ring the sub-property list names are 
Feedback, InsertionDevices, PowerSupplies, MSCR, Opti-
mization, Recover, BeamOFF. 

Another sub-property contained in the sequencer global 
free property called SuperList contains the name of all the 
sub-properties listed above. This information is used by 
graphical applications to dynamically build up the GUIs 
for configuration, monitoring and control of the sequence-
based operations.  

Executing External Programs 
The sequencer language supports a restricted group of 

Tango APIs. For more complex tasks it is possible to exe-
cute in the sequence, by means of a c-style “exec” system 
call, Python, Matlab, Bash and any other type of script. 

GRAPHICAL INTERFACE 
One of the main problems of automation is making the 

operator aware of the operations involved in a procedure 
and understand what is the cause of an error. Both in 
FERMI and Elettra BTs are made of up to a few hundreds 
of sub-sequences and the number is constantly growing. In 
order to provide the operators with flexible command and 
control tools two graphical panels based on Qt-Cumbia li-
braries [7] have been developed. 
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Sequencer GUI 
The panel loads a list of predefined root sequences or, by 

means of Tango wildcards (ex: seq/*/* selects all se-
quences in Tango database), composes a dynamic list of all 
the sequences matching the search criteria. Thanks to the 
information gathered from the devices and the Tango data-
base, the panel identifies the BT dependencies and builds 
the BT in a hierarchical list format. The user can inspect 
the entire BT from the root sequence node down to the leaf 
nodes (see Fig. 4). A tree structure view is also available. 
By browsing the hierarchical list, the user gets the descrip-
tion, the state (Tango state attribute), the last execution 
time and the last execution elapsed time of each sequence. 
In the hierarchical list the states of all non-sequence Tango 
devices logically connected to the BT are also reported. 

The user can start/stop an entire BT or just a part of it. 
The source code of each sequence can be displayed in a 
read-only format. 

A textual search can be performed simultaneously on the 
logging buffers of all the sequences belonging to a BT. Fur-
thermore, the panel not only displays live, thanks to the 
Tango events, the list of errors and settings performed by 
one BT, but can also collect any action performed by all the 
sequencers configured in a Tango database. 

SeqLauncher GUI 
This panel read the SuperList free property from the 

Tango database and creates as many tabs as the number of 
lists found inside the SuperList property. Each tab contains 

all the root sequences belonging to the corresponding list 
(see Fig. 5). For each sequence an “OpenGUI” button starts 
preconfigured legacy applications that ease the monitoring 
of the BT execution. Similarly, the “CloseGUI” button kills 
all applications started by the OpenGUI button. This is the 
panel used by the operators in control room to access di-
rectly the sequencers.  

WEB interface 
A web interface (see Fig. 6) based on PUMA [8] allows 

listing all sequence devices installed in FERMI and Elettra. 
Sequences can be remotely started by users after LDAP au-
thentication.  

APPLICATIONS 
There are 958 sequencer devices installed in the Elettra 

Tango database and 995 in the FERMI Tango database. 
In Elettra, most of the high-level applications used for the 

accelerator automation have been replaced by sequencers. 
There are two main sequencers, the first for recovering the 
machine from a faulty state, the second for injecting the 
beam into the storage ring and performing optimizations 
and orbit correction until a stable beam can be delivered to 
the beamlines. Thanks to the BT modularity both of them 
have been embedded in larger sequencer that is able to run 
the machine autonomously. The work to refine especially 
the recovery sequencers is ongoing with the goal to face 
any anomalous situation from which the machine could be 
automatically recovered. 

 
Figure 4: Overview of the BT used for the Elettra storage ring injection at 2GeV. The Root node launches 31 sub-sequences 
over a total of 219.  The total procedure lasted 1906 seconds. Excluding the “waiting tasks”, the longest ones during the 
injection are: automatic optimizations (338 sec.), orbit correction (116 sec.), undulator gaps closing (56 sec.).   
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Figure 5: Control panel for driving electron and photon beams to diagnostic stations and beamlines in FERMI. 

 
Figure 6: Web based sequence browser. 

In FERMI the sequencers have been introduced quite re-
cently. They supervise the online the FEL automatic opti-
mizers and reconfigure the machine for delivering the elec-
tron and photon beams to diagnostic stations and beam-
lines. 

CONCLUSION 
With the adoption of sequencers, developing automation 

applications with very complex logics has become much 
easier than in the past. More people, even non-professional 
programmers, are actually working on automation, bring-
ing machine autonomous operations to unprecedent levels 
of complexity. 

Thanks to the sequencers, moving logics from GUIs to 
server applications is possible and convenient: the server-
side logics can be recalled by any client in the control sys-
tem without caring of its implementation. Moreover, en-
coding in a sequencer a procedure that is normally written 
in an operator manual or, even worse, known by just one 
expert, is a clear advantage. Once the optimal sequence is 
defined and encoded, everyone can perform that task at ex-
pert level.  

Another advantage in the present Machine Learning era 
is that, by using sequencers, the machine operations be-
come more deterministic. Machine settings are not polluted 
by the randomicity of the human actions. As a conse-
quence, any Machine Learning algorithm designed to learn 
from logs any insight of malfunctions or weird behavior of 
the machine, will benefit from processing cleaner data.  

To start playing with the sequences there is no need of 
external software except the sequencer Tango server and 
the Tango control system. For building up more complex 
applications, the use of the Launcher template and the Qt 
GUIs are strongly suggested. 
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