
THE IBEX SCRIPT GENERATOR
James King, Jack Harper, Thomas Löhnert, Aaron Long, Dominic Oram,

STFC/RAL/ISIS, Chilton, Didcot, Oxon, UK

Abstract
Experiment scripting is a key element of maximising uti-

lisation of beam time at the ISIS Neutron and Muon Source,
but can be prone to typing and logic errors. The IBEX
Script Generator enables collaboration between instrument
scientists and users to remove the need to write a script for
many experiments, so improving reliability and control.

For maximum applicability, the script generator needs to
be easily configurable which is achieved by instrument sci-
entists creating script definitions. Script definitions are Py-
thon classes that contain the parameters a user can fill in
for each action in the script, and functions to execute, val-
idate and provide a time estimation for each action.

A user organises a table of actions and fills in their values
to create their experiment, these action values are validated
in real time. With a valid table of actions a user can gener-
ate a Python script which can be executed via the IBEX
scripting tools.

A key requirement of the script generator is for it to in-
tegrate the pre-existing Java based IBEX client. Py4J is
used as a bridge between Java and the Python script defi-
nitions. An iterative, user-focused approach has been em-
ployed with quality assurance techniques such as user in-
terface (UI) testing to achieve a behaviour-driven develop-
ment workflow.

Further planned development includes dynamically con-
trolling the execution and values of actions whilst the script
is running, action iteration and user experience improve-
ment.

INTRODUCTION
IBEX [1] is an EPICS based control system developed

and used at the ISIS Neutron and Muon Source to control
beamline equipment and experiments. A key feature of
IBEX is the Python-based control and scripting library
known as genie python [2]. This library provides functions
to control experiments in an automated manner, beginning
and ending data collection, writing to EPICS process vari-
ables (PVs) to control equipment amongst a host of other
functionality.

Scripting is an integral part of how ISIS runs experi-
ments, both in IBEX and the previous control system SECI.
Giving users the power to write scripts allows them to con-
trol and automate experiments in a very customisable and
expressive fashion. It also helps improve the reproducibil-
ity of experiments and enables maximum utilisation of
beam time.

However, there are a few pitfalls when it comes to using
scripting extensively. To script an experiment a user needs
to understand how to code in Python, this places a steep

learning curve ahead of users who have little or no experi-
ence in coding. This learning curve distracts user focus
away from the science of an experiment. Furthermore,
even if a user is proficient in coding they are not familiar
with genie python and IBEX, so they must learn a new
complex set of commands and logic in order to correctly
run their experiment. For users that are familiar with the
environment it is certainly easier, but writing scripts is still
prone to logic errors and mistyping of commands.

There are attempts to mitigate many of these issues
within genie python, such as checking of scripts for pro-
gramming errors at load time, providing a reduced com-
mand set for specific instruments and providing autocom-
plete for PVs of interest. One of the main roles of the script
generator is to mitigate the pitfalls surrounding scripting as
well as enhancing the experience of a user at the facility by
enabling them to focus on the experiment.

There are a number of script generators in use at ISIS
with varying degrees of functionality - some that work with
the previous control system SECI. The aim of the IBEX
script generator, produced by the experiment controls
group [3], is to provide a unified tool – taking inspiration
from other script generators currently in use at ISIS – for
generating scripts without having to write code for specific
experiments.

WORKFLOWS AND FUNCTIONALITY
Many experiments at ISIS follow a regular pattern. Users

and scientists often customise previous scripts that follow
a similar pattern to the experiment they are creating. The
script generator targets this workflow by allowing instru-
ment scientists to create script definitions – which define
the parameters an experiment can take and the logic to run
the experiment – and users to input experiment parameters.
Using these two inputs the script generator can then gener-
ate a script (see Fig. 1).

Figure 1: Script Generator inputs and outputs.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV049

Experiment Control

TUPV049

519

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Figure 2: Script Generator User Interface.

To create their experiment the user must select the script
definition (see Fig. 3) that contains the logic to run it and
input their parameters into a table (see Fig. 2). In the table
rows are individual actions for the script to run and
columns are the experiment parameters to run each action
with.

Figure 3: Script Definition selector.

There are a number of gestures (user actions) to control
the order and values of actions. These include copy/paste,
insert, append, delete and duplicate gestures, as well as the
ability to tab between cells and reorder actions.

A user can generate a script and save it to file. This script
can be executed in the IBEX scripting console. Alterna-
tively a script can be previewed and sent to the script server
[4] – a server that runs queues of Python scripts separately
to the scripting console.

One requirement of the script generator is to be able to
reload a script back into the script generator and edit it. To
achieve this, when generating a script the parameters en-
tered by the user are also saved to a separate json file. This
file can then be reloaded into the script generator for use at
a later point.

Script generator parameters are validated in real time.
The validation aims to ensure incorrect values and mistyp-
ing do not end in generated scripts executing incorrectly or
failing to run.

Scientists provide a validation function in a script defi-
nition. This function is arbitrary Python code which vali-
dates individual actions’ parameter values. If invalid this
function provides a string containing a message to display
to the user as a tooltip when hovering over the action. The
validity of actions are displayed through colouring an ac-
tions row.

Another feature which adds an output (read-only) col-
umn is time estimation. A script definition defines a time
estimation function, which takes an actions parameter val-
ues and returns a number of seconds that this action will
take to run. The time estimation column then displays this
time to run in hours, minutes and seconds for each action.
A total time to run is also calculated and displayed.

There are two types of parameters in the script generator,
action parameters and global parameters. The previously
mentioned parameters that are contained in the table are
action parameters and only apply to one action. Global pa-
rameters are only set once for the whole script. For exam-
ple, a script definition may use a global parameter to select
a temperature controller for the whole experiment, and then
individual actions may have a parameter to specify the tem-
perature to set on that temperature controller for that action.

Global parameters are also validated individually, and
can be used in the validation, time estimation and execu-
tion functions for individual actions (see Fig. 4). All these
features are subject to refinement and additional function-
ality. This future work is discussed in the future work sec-
tion.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV049

TUPV049C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

520 Experiment Control

Figure 4: Global Parameters.

ARCHITECTURE
The IBEX control system uses a client-server architec-

ture. The client provides a variety of perspectives for in-
strument control including the scripting console and script
server. The client is developed using Java and the Eclipse
RCP framework [5] and as such follows object-oriented de-
sign patterns to form the software architecture [6].

As there is a requirement to include the script generator
as part of the IBEX client, it has also been written in Java
using the Eclipse RCP framework.

Python was chosen as the scripting language for IBEX
because it is an easy to learn language and is widely used
in the sciences. Because Python is used for IBEX scripting,
scientists have experience writing Python scripts, and the
genie_python library has functions for instrument control,
it makes sense for script definitions to also be written in
Python.

Py4J [7] is a Python and Java library that enables code
from each language to access objects from the other lan-
guage. We are utilising Py4J as a bridge between the Java
model and script definitions.

The architecture follows the Model-View-ViewModel
(MVVM) architectural pattern [8] (see Fig. 5). The Java
model talks via the Py4J bridge to the script definitions.

Figure 5: The Script Generator Architecture.

Python is the main language we target to generate scripts
for. However, there is a requirement to be able to add new
languages to generate scripts in. We have made the gener-
ation mechanism extensible using the strategy design pat-
tern (see Fig. 7). This pattern will allow us to add extra
generator languages by extending the AbstractGenerator
class.

The PythonInterface class that a GeneratorPython object
makes calls to is a façade on the communications over the
Py4J bridge. The Python side is made up of a number of
script definitions provided by instrument scientists and a
number of classes providing helper methods to facilitate
communication across the Py4J bridge (see Fig. 6).

Figure 6: Python Utilities to access Script Definitions.

To compensate for the brittle and slow communication
over the bridge, all communications are handled in separate
threads via the Java CompletableFuture mechanism [9].
The CompletableFuture mechanism avoids blocking on the
UI thread, keeping the UI responsive. However, it does
mean we cannot simply set and get values from the Python
side. We have thus had to develop a mechanism where the
Java Model listens for the CompletableFutures to complete
and passes these values back up through chain of listeners
to the ViewModel from the Model.

QUALITY ASSURANCE
There are 2 forms of automated testing used to ensure

the quality and behaviour of the script generator: unit test-
ing, and system UI testing. Unit testing is carried out in
Java using the JUnit framework [10] and in Python unittest
[11] is used.

Both the JUnit and unittest tests are run as part of the
build process, which is regularly executed on a Jenkins
[12] continuous integration pipeline.

Our system UI testing is run using a separate continuous
integration pipeline. These tests are written and executed
with the Squish UI testing tool [13]. Squish supports a Be-
haviour-Driven Development (BDD) [14] approach. Tests
can be laid out in the Gherkin [15] ubiquitous language.
These tests reference steps that are defined as functions
which carry out actions such as press buttons, fill in table
cells and verify the presence and state of UI elements.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV049

Experiment Control

TUPV049

521

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Figure 7: Strategy pattern used for generator extensibility.

We have used the Squish BDD tools [16] to describe be-
haviours of the script generator and verify their presence.
Our suite of UI tests have caught regressions and devia-
tions in behaviour prior to releases on multiple occasions.
For example, when duplicating an action and changing the
contents of one of the actions, these changes were also vis-
ible to the test on the other action revealing a shallow copy
issue on the duplication mechanism.

During the release creation process we also carry out
some manual system tests. These manual tests include
smoke tests and tests that are difficult or impossible to au-
tomate using our current tools.

Further to testing, all code for the script generator is sub-
ject to review. These reviews help to minimise mistakes,
share knowledge and techniques. Reviews also ensure con-
sistency is practiced throughout the system, and require-
ments and quality standards are met. These reviews are an
integral part of our quality assurance and often lead to re-
works which drastically improve software quality and
functionality, and the underlying code.

We run the static code analysis tool Checkstyle [17] on
our Java code to identify programming flaws and enforce
consistent coding standards, improving the correctness and
maintainability of our codebase [18].

FUTURE OF THE SCRIPT GENERATOR
Although the script generator can be installed on any

machine [19] we are current only deploying releases to
two muon instruments [20] [21], for which we have met
the requirements.

We are now looking at expanding the script generator
functionality to make it useful to other instruments [22].
The project is being managed as a subproject of the IBEX
project and fits into the scrum methodology used for the
IBEX project [23]. Scrum requires work packages to be
split into manageable chunks taken from requirements.

A new requirements document is being created to cover
all interested parties. These requirements are being split
into milestones in order to provide a roadmap to scientists
and developers. The roadmap can then be used when plan-
ning work for the project.

The requirements are also split into the following cate-
gories: dynamic scripting, estimation, generated scripts,
actions and parameters, gestures, script definitions, usabil-
ity and miscellaneous.

Dynamic scripting captures behaviours which interact
with the script server to run and control scripts directly
from the script generator. Eventually a user will be able to
start, stop and pause execution of the script, edit actions
whilst the script is running, and execute dry runs.

Dry runs will not interact with any hardware but use a
simulated version of genie python to test scripts act as ex-
pected. The script generator will display feedback from the
running script to ensure the user knows the status of their
running script.

Time estimation of a script is achievable with the current
script generator, but scientists would also like to be able to
estimate other values. For example, muon instrument sci-
entists want to display estimated events. This is captured in
the estimation category as well as displaying an estimate of
when the script would finish if run at the current time.

There is some debate as to the best method of saving and
reloading parameters into the script generator. Using a sec-
ond file to store the parameters is confusing to users. Work
to hide or remove the second file, as well as improving the
readability of generated scripts and reloading of global pa-
rameters is captured by the generated scripts category.

Currently, the script generator only accepts values in the
table as strings. We plan to define types for action parame-
ters. This will enable script definitions to configure dis-
plays such as having drop downs for enumerated types and
only accepting numbers as inputs for integers. This typing
system is captured in the actions and parameters category.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV049

TUPV049C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

522 Experiment Control

Also captured in this category is the ability to select dif-
ferent script definitions for each action in the table and cre-
ation of configurable objects. These objects are passed a bit
like global parameters through the entire script but are de-
coupled from script definitions so can be used in different
types of actions. Both the configurable objects and ability
to select different script definitions for each action are in-
spired by another script generator currently in development
at ISIS.

The gestures category captures the ability to export and
import parameters to and from excel spreadsheets and
looping more intelligently over actions.

We want to enable ease of development for script defini-
tions to make the script generator a tool of choice for in-
strument scientists. Instrument scientists may not have ex-
perience in tools to manage code bases and so we have de-
vised a workflow for managing them easily which is cap-
tured in the script definitions category.

The usability category defines work to improve the user
experience, such as displaying more helpful errors when a
script definition is invalid, improving the visibility of prob-
lems on the loading screen, and a UI review and subsequent
redesign.

Finally, the miscellaneous category captures a few
smaller work packets that do not fit into the categories
listed previously, such as bugs to fix, some reorganising of
where we store our script generator python code and reduc-
ing the size of the built script generator.

CONCLUSION
The IBEX script generator fulfils many of the required

behaviours to improve the reliability of scripting experi-
ments and is well on the way to being a useful tool for
beamlines at the ISIS Neutron and Muon Source. However,
more work is required to fulfil the requirements of those
beamlines and improve the usability of the script generator.

Developing the script generator has come with a number
of challenges including using a bridge between Java and
Python. These challenges and the object-oriented design
techniques employed have helped form the software archi-
tecture of the script generator.

We utilise several quality assurance measures to give us
confidence in the functionality of the script generator. Alt-
hough these measures have not caught all bugs and usabil-
ity issues they have caught a number of significant prob-
lems. Our iterative approach and close working with a
small number of early users have allowed us to pre-emp-
tively identify issues and refine the script generator to im-
prove its robustness.

Development work will continue to run within the IBEX
project. A renewed focus to work with a wider user base
will help us to develop a roadmap to fulfil the requirements
of more beamlines at ISIS and drive future work on the
script generator.

REFERENCES
[1] F.A. Akeroyd et al., “IBEX - the New EPICS Based Instru-

ment Control System at the ISIS Pulsed Neutron and Muon
Source”, in Proc. 15th Int. Conf. on Accelerator and Large

Experimental Physics Control Systems (ICALEPCS'15),
Melbourne, Australia, October 2015, paper MOPGF048,
pp. 205-208, doi:10.18429/JACoW-ICALEPCS2015-
MOPGF048

[2] Genie Python, https://github.com/ISISComputing-
Group/genie_python

[3] Experiment controls group (ISIS),
https://www.isis.stfc.ac.uk/Pages/Experi-
ment-Control.aspx

[4] Nicos script server, https://nicos-controls.org/
[5] J. McAffer, J. Lemieux, and C. Aniszczyk. “Eclipse rich cli-

ent platform”, Addison-Wesley Professional, 2010.
[6] E. Freeman, et al., “Head First Design Patterns”, O'Reilly

Media, Inc., 2008.
[7] M. Labanda-Jaramillo et al., “Empirical Study Between

Compiled, Interpreted, and Dynamic Programming Lan-
guages Applying Stable Ordering Algorithms (Case Study:
Java, Python, Jython, Jpype and Py4J)”, KnE Engineering,
2018, pp. 122-132.

[8] V. Gaudioso “Mvvm: Model-view-viewmodel”, in Founda-
tion Expression Blend 4 with Silverlight, Apress, 2010,
pp. 341-367.

[9] CompletableFuture mechanism,
https://www.baeldung.com/java-completablefu-
ture

[10] JUnit, https://junit.org/junit5/
[11] unittest, https://docs.python.org/3/li-

brary/unittest.html

[12] Jenkins, https://www.jenkins.io/
[13] Squish, https://www.froglogic.com/squish/
[14] D. North, “Introducing bdd”, Better Software, vol. 12, 2006.
[15] Gherkin language, https://cucumber.io/docs/gher-

kin/

[16] Squish BDD Tools, https://www.froglogic.
com/squish/features/bdd-behavior-driven-
development-testing/

[17] Checkstyle, https://checkstyle.sourceforge.io/
[18] S. Edwards, N. Kandru, and BM. Rajopal, “Investigating

static analysis errors in student Java programs”, in Proc.
2017 ACM Conference on International Computing Educa-
tion Research, Tacoma, WA, USA, Aug. 2017, pp. 65-73.

[19] Installing the IBEX Script Generator,
https://github.com/ISISComputing-
Group/ibex_user_manual/wiki/Downloading-and-
Installing-The-IBEX-Script-Generator

[20] EMU Beamline,
https://www.isis.stfc.ac.uk/Pages/emu.aspx

[21] MuSR Beamline,
https://www.isis.stfc.ac.uk/Pages/musr.aspx

[22] ISIS Beamlines,
https://www.isis.stfc.ac.uk/Pages/Instru-
ments.aspx

[23] K. Baker et al., “Agility in Managing Experiment Control
Software Systems”, presented at ICALEPCS’21, Shanghai,
China, Oct. 2021, paper WEAR03, this conference.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV049

Experiment Control

TUPV049

523

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

