
A PYTHON PACKAGE FOR GENERATING MOTOR HOMING ROUTINES

A. S. Palaha, T. Cobb, G. Knap, Diamond Light Source, Didcot, UK

Abstract
Diamond Light Source uses hundreds of Delta Tau

Turbo PMAC2 based motion controllers that control
motors with precision and repeatability. Homing is critical
to these requirements; it safely moves axes to a well-
known position using a high-precision device for
detection, leaving the overall system in a well-known
state and ready for use. A python package called
“pmac_motorhome” has been developed to generate
homing routines for multiple motors across multiple
motion controllers, allowing the user to write a script that
is terse for standard/typical routines but allows for
customisation and flexibility where required. The project
uses jinja templates as `snippets’ to generate the homing
routine code written in Delta Tau PLC notation (PLC is
the name for logic programs in Delta Tau motion
controllers). The snippets can be re-ordered and grouped
together, supporting the design of homing routines for
multi-axis systems with mechanical limitations that
require an orchestrated approach to safely home the axes.
The python script using the package is kept terse using a
context manager and can group axes together to the same
homing group easily.

WHAT IS “HOMING” A MOTOR/AXIS?

Motors, sometimes referred to as “axes”, typically turn
rotational movement into moving some load. In the opera-
tion of an x-ray synchrotron and its associated beamline
laboratories, there are many motors used on scales that re-
quire precise and repeatable movements.

The position of axes is typically tracked with an enco-
der that produces signals as the axis turns; these signals
are monitored by the motion controller and converted into
positions. Assuming no power loss or miscounting of en-
coder signals (e.g. due to speed or slippage) then the posi-
tion will remain accurate. However, the counting must
start from a known position, and this must be recoverable
in the event of power loss or miscounting. This is where
homing procedures are critical.

The known position can be provided either by a dedica-
ted home switch, activated when the axis reaches a certain
position, or one of the end-of-travel limit switches that are
usually present. The manner of activation is also impor-
tant; sometimes requiring moving to the switch and then
in a particular direction to release the switch, or to ap-
proach the switch from a particular direction.

Another method of creating a homing signal can be to
drive against a hard stop which may generate a following
error (the difference between the demanded move and
measured move). This is generally used for small axes
that can tolerate driving into a hard stop.

Consideration must be made for axes that are coupled;
that is when movement in one axis will affect another
such as when they are attached to the same load. Such
scenarios require homing routines that can act on multiple
axes. With the possibility of many different combinations
of axis types and multi-axis systems, the ability to create
tailored homing routines for each axis or group of axes is
a necessity.

WHY IS PMAC_MOTORHOME
NECESSARY?

The first homing routine generator written in python for
Diamond Light Source (DLS) was called motorhome.py.
It generated homing routines as PLC code for Delta Tau
motion controllers and started as a single script. As
different homing scenarios became necessary, this script
grew into a large monolith that was difficult to maintain
and became inflexible in some scenarios. The python
interface to motorhome.py could not be used to add a
custom piece of PLC code that might be used for unique
or rare homing scenarios.

PROJECT REQUIREMENTS

The new homing routine generator had to satisfy the
following requirements to be a viable replacement for
motorhome.py, and to ensure minimal disruption/effort in
converting the original generator scripts into the new
style:

Maintain the EPICS interface

The EPICS Input Output Controller (IOC) used to con-
trol and monitor the Delta Tau motion controller device
also monitors the status of the homing routines by polling
the program variables, or “p-variables”. For instance, the
State, Status and Group number of homing routines are
accessed through $(PLC)00, $(PLC)01 and $(PLC)02 re-
spectively; where $(PLC) is the number of the PLC pro-
gram (there can be up to 32 programs stored on the mo-
tion controller). So, for the homing routine stored in
PLC9, the Status of the routine would be held in p-varia-
ble 0901.

The State and Status are enumerations that indicate if a
routine is operating, has completed, failed, or been
aborted. The Group number indicates whether a particular
axis in a group is being homed, or all axes in the group
are being homed. The group is configured in the python
script that imports the generator module.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV040

Device Control and Integrating Diverse Systems

TUPV040

497

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Have a Python File/Script per Motion
Controller or Group of Motion Controllers

The PLC code generated and stored for motion control-
lers at DLS is organised firstly by domain (either beamli-
ne laboratories or storage ring areas), and then by motion
controller device. For example, there is a directory for a
particular beamline laboratory (BLxxI) inside which there
is a directory for each motion controller. The domain level
directory typically contains the python script that imports
the generator python module. This script configures whi-
ch axes will be grouped together and how they will be ho-
med.

Some domains have a python script per motion
controller, so this must also be achieved by
pmac_motorhome.

Home up to 16 Axes at once

The original homing routine generator allowed the
grouping and homing of 16 axes together from one
motion controller. Although rarely used in practice, this
must be achievable with the new generator to maintain
compatibility.

Allow Insertion of Custom Routines

Some motion setups require a specific set of homing in-
structions that are uniquely used, and therefore not worth
adding to the generator module as a pre-defined homing
type. Originally this was achieved by generating the clo-
sest matching homing routine and then modifying it ma-
nually. Though this worked, and was stored under version
control, it was not automatically repeatable when the ge-
nerator script was run.

The pmac_motorhome module should allow the
insertion of text strings into the generated homing routine.
As the typically used pre-defined homing routines would
be a list of actions that would apply to motor axes, users
of the python configuration script should be able to define
custom sequences of actions to make a new homing
routine, with custom code inserted where required.

User Friendly Python Interface

The structure of the python configuration script using
the original generator, motorhome.py, was arguably sim-
ple but did not make an easily human-readable layout. Be-
cause the python configuration script is called once for
each motion controller using a Makefile system, the con-
figuration script is set out in blocks according to the name
of the homing PLC to be generated, so there may be mul-
tiple blocks per motion controller. As a homing PLC is
configured by adding motors to the PLC object when
using motorhome.py, the configuration and grouping is
done per added motor, so it is not clear which motor axes
are grouped together without studying the assigned group
numbers.

The pmac_motorhome generator will make use of con-
text managers to structure the configuration script. This
should group motor axes together and has all the groups

for a particular PLC object listed under it, with the requi-
red python indentation providing a visually easy to under-
stand structure. This also allows changes or configura-
tions to be applied to motor axes, groups, or to the overall
homing PLC explicitly.

Additionally, it should be possible to explicitly define a
homing routine as a sequence of actions for a particular
group or motor axis. For repeated sequences, such a list of
actions can be defined as a separate function. The most
commonly used homing sequences are provided in
pmac_motorhome as pre-defined functions.

During most of Diamond’s operation, it was the con-
trols engineer’s responsibility to create and maintain the
PLC code for homing routines. Moving forward, this re-
sponsibility will be shared between the controls and mo-
tion engineers, combining experience and expertise in
motor control and operation. This should also assist in the
commissioning process of new motion axes. Having a
more user-friendly interface will help the creation and
maintenance of the homing routines between the two
groups of engineers.

The new generator tool and interface should use
python3, instead of python2 like the original generator.
This should bring the tool into line with currently
supported python versions and allows the use of some of
the new features in the underlying pmac_motorhome
code.

Can Reproduce Existing Homing Routines

To have as minimal disruption as possible during the
replacement of the original homing routine generator with
pmac_motorhome, a tool should be provided to convert
an existing python script that imports the original
generator into a pmac_motorhome style python script.
This should automate the majority of the conversion
process, to simplify the adoption of the new generator by
controls engineers and provide confidence that existing
and working homing routines will not be changed in the
process. This should be demonstrated during the
conversion process by comparing the outputs of the old
and new generators when run for a particular beamline or
domain of motion controllers.

Enforce DLS Homing Conventions

Conventions for homing PLC code at DLS includes
only using PLC numbers above 8 for homing routines (1-
7 are reserved for specific non-homing functions) and
having all axes in the same group home with the same
homing sequence.

PYTHON INTERFACE

The user interface of the pmac_motorhome generator is
a python3 configuration script that imports the pmac_mo-
torhome package. This python3 script will configure PLC
objects that will render a homing routine PLC file.

The python interface uses context managers to specify
the configuration of the different layers of the PLC file;
the top-level object is the PLC, within this there are

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV040

TUPV040C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

498 Device Control and Integrating Diverse Systems

groups, and within those are axes. Even solitary axes need
to be defined in a group, as the group number is used to
monitor homing progress and state.

In python, a context is created using the key word
“with” followed by the instantiation of the object, and fi-
nally a colon; and then the next indented lines are now
within the created context. Context managers allow the al-
location and release of resources as needed. Boiler plate
actions such as inserting a tidy-up snippet of PLC code or
writing a PLC code to file can be implemented in the PLC
object class. These boiler plate actions are necessary for
every homing PLC, and would be executed implicitly wi-
thout including it in the user level configuration script.

A simple example of a configuration script is shown in
Figure 1. The editor used in the example, and in the
development of this package, is Visual Studio Code.

Figure 1: simple configuration script for a homing PLC

The use of the python language lends itself to defining
custom routines that are repeatedly called. Such routines
can be called inside a group to operate on some given
axes, and can make use of pre-defined functions that
insert blocks of code, e.g. “drive_to_limit(direction)” or
“jog_if_on_limit(direction, limits)”. An example of a
custom routine for a group of four axes is shown in Figure
2.

Figure 2: example of custom homing routine definition

Custom code snippets can also be introduced, and with
the control of the sequence of pre-defined and custom

blocks even more control of the customisability of ho-
ming sequence generation is possible.

Finally, the layout and indentation due to the use of
context managers creates a more readable configuration
script; where groups of axes are visually one block of
code. The naming of the snippet functions and routines
aims to be as descriptive as possible, while the availability
of pre-defined homing sequences for the most typical and
simple of homing scenarios will allow for terse and
concise configuration scripts for most homing scenarios.

GENERATING PLC CODE

The python configuration script creates a PLC object
that contains groups of axes, and all these objects are in-
stances of classes that contain data members detailing the
homing sequence to be performed. These PLC objects are
fed to the homing sequence PLC generator.

The pmac_motorhome generator compiles the homing
routine PLC code by piecing together blocks of code for-
med from code templates. The Jinja engine is used to in-
terpret and fill in the templates. The templates contain
special place-holders allowing python-like code to be in-
serted and eventually rendered into text strings. These
templates are referred to as “snippets” in the pmac_moto-
rhome package, and generally correspond to functional
blocks of code, such as the “drive_to_limit(direction)”
function, among others.

The interpreted code in the templates allows loops to be
performed, and more snippets to be invoked and inserted
in place, such as for multiple motors in the same group. It
also provides conditional logic, allowing for snippets to
be included if, for example, an option to perform a move
after homing is supplied. When invoking a particular
snippet with this option, the corresponding code would be
rendered, otherwise it would be omitted. The snippet
shown in Figure 3 shows the post home action snippet,
using an if-statement to control whether the code template
is rendered or not. If the python class member group.post
contains a non-empty string, the template will render.

Figure 3: snippet inserting code for post home actions

The snippets are structured in such a way as to
represent simple and broadly singular functions, for the
benefit of developers and maintainers of the code and to
correspond to the required structure of the homing PLC
code that already exists at DLS for its Delta Tau motion
controllers. A particular snippet will usually perform one
function, however there is a base snippet that includes all
the beginning and ending boiler plate, and contains loops
for all the groups and axes contained in the PLC.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV040

Device Control and Integrating Diverse Systems

TUPV040

499

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

The final step is writing the rendered code into a file,
the path for which is specified in the configuration of the
PLC object.

CONVERTING TO THE
PMAC_MOTORHOME GENERATOR

A converter tool is provided in the package to convert
the original python configuration scripts in the DLS mo-
tion directories to the new style of python script using the
pmac_motorhome package. This is to facilitate the adop-
tion of the new style of homing code generation with as
little intervention as possible, and to check that the new
generator can produce the same homing PLC code as that
which already exists.

The converter tool (written in python3) operates on a
domain level or motion controller level directory and
creates two copies of these directory structures in a tem-
porary location: old and new. The old copy has the origi-
nal generator script called through a subprocess call in a
python2 shell (as the original generator is a python2 tool).

The new copy is also run through a python2 shell with
the original generator script, but the generator code is
“shimmed” (or substituted) with code that records the data
structures produced without creating a file on disk. These
data structures are the PLC objects that contain group and
axis objects and are required in order to create a
pmac_motorhome style configuration script. As the con-
verter tool is run in python3 and the shimmed motorho-
me.py generator is run in a separate python2 shell, the
PLC data object must be loaded in some way into the py-
thon3 instance of the converter tool. This is achieved by
creating a FIFO (First-In-First-Out) pipe file from inside
the python3 converter tool. Then the shimmed motorho-
me.py generator in python2 will write to that FIFO file a
copy of the PLC data objects it creates.

To ensure the data is compatible between python2 and
python3, the PLC data object is first serialized into a byte
stream using the pickle package before being encoded
using the struct package into a packed form. This encoded
byte stream is written to the FIFO file, where it is read out
by the converter tool in python3 that is monitoring it. The
byte stream is unpacked and then un-pickled to extract the
native python data structure of the PLC object. Using this
PLC object, the configuration script using pmac_moto-
rhome can be generated in python3 and run in its own py-
thon3 shell to create the homing sequence PLCs in the
new copy of the motion directories.

The final step of the conversion process is to compare
the homing PLCs created using motorhome.py with those
created using pmac_motorhome; this is done with a call to
the “diff” command with options to ignore blank lines and
space changes. The result is then reported to the terminal
indicating whether any comparisons or conversions failed,
and provides a short, generated script to copy the new py-
thon3 configuration script to the original motion directory
for the beamline or motion controller, if the user chooses
to do so.

It is expected that not all conversions will be
successful, however enough development has been done
to ensure that about 85% of existing DLS motion homing
directories will convert successfully, and of the remaining
directories the majority of individual homing PLC files
will be successfully converted. The remaining homing
PLCs that were not converted can then be investigated
manually, the expectation being that most will be custom
PLCs or edge cases that will require some tweaking of the
configuration script.

CONCLUSION

The pmac_motorhome package has been specified, de-
signed and developed with the aim of improving the tool
to generate critical motion homing routines at DLS, and
other institutions that use Delta Tau motion controllers.
The improvements include a more friendly and readable
user interface, a better structured code base that is more
maintainable and a testing framework with continuous in-
tegration built in. Documentation is generated in a web
page format with explanations, how-to guides, tutorials
and references; this will be beneficial to developers who
want to add another defined homing routine or new snip-
pets. Consideration has been given to the roll-out and
adoption of the new tool, with effort put into removing
any barriers to adoption and creating a conversion process
that is as simple and confidence inspiring as possible for
the controls engineers as the targeted users.

This tool provides the means to create customised ho-
ming sequences where required, and always be able to re-
create it without manual intervention or editing. Finally, it
will and allow better collaboration between motion and
controls engineers through its more readable user interfa-
ce and documentation.

It is hoped that pmac_motorhome may prove useful to
other institutions using many Delta Tau motion controllers
that require homing routines.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV040

TUPV040C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

500 Device Control and Integrating Diverse Systems

