
A RELIABLE MONITORING AND CONTROL SYSTEM FOR VACUUM

SURFACE TREATMENTS

J. Tagg, E. Bez, M. Himmerlich, A. K. Reascos Portilla, CERN, Geneva, Switzerland

Abstract
Secondary electron yield (SEY) of beam-screens in the

LHC puts limits on the performance of the accelerator. To
ramp up the luminosity for the HiLumi LHC project, the
vacuum surface coatings team are coming up with ways to
treat the surfaces to control the electron cloud and bring the
SEY down to acceptable levels. These treatments can take
days to weeks and need to work reliably to be sure the sur-
faces are not damaged. An embedded control and monitor-
ing system based on a CompactRIO is being developed to
run these processes in a reliable way [1].

This paper describes the techniques used to create a Lab-
VIEW-based real-time embedded system that is reliable as
well as easy to read and modify. We will show how simpler
approaches can in some situations yield better solutions.

PROJECT AND BACKGROUND

The objective of the LESS (Laser Engineered Surface
Structures) project is the commissioning of an in-situ laser
surface treatment conceived to mitigate electron clouds in
the Large Hadron Collider (LHC) at CERN. Secondary
electrons are multiplied when they interact with the vac-
uum chamber walls of the accelerator and consequently
form electron clouds that can negatively affect its perfor-
mance.

The secondary electron emission of a surface can be re-
duced by surface roughening. In this project, pulsed laser
processing is applied to generate micro and nanostructures
on the inner vacuum chamber surface that surrounds the
proton beam. In this way, secondary electrons are captured
by the surface geometry. The resulting structures and the
performance of the surface strongly depend on the pro-
cessing parameters, such as the laser power, the scanning
speed, and the line distance, as well as on the scanning pat-
tern [2].

The final treatment must be applied in-situ in the already
existing accelerator and the system must be capable of
treating tens of meters of vacuum pipe autonomously. The
dedicated setup to perform this is composed of a picosec-
ond pulsed laser source and a Beam Delivery System
(BDS) that shapes and couples the laser beam into an opti-
cal fiber, which guides the laser light through an inchworm
robot where the beam is decoupled through a rotating noz-
zle (see figure 1). The translational movements of the robot
are driven by a pneumatic clamping system.

Figure 1: Longitudinal view of the inchworm inside a beam

screen. The laser nozzle in the center points upwards. a.

inchworm, b. nozzle, c. beam screen.

This setup requires a control system that communicates
with each component and allows flexible parameter
changes. The system must be reliable enough to run for
many days unattended. For example, in a spiral treatment
format (described later) we would need to treat 16m of
beam screen while advancing by 50µm approximately
every 5s. This would take up to 3 weeks. Similar times are
expected for other sequences.

The system must also manage concurrent communica-
tion with all the components which make up the system and
ensure that any issue is either resolved, or the system is
safely stopped so the treatment can continue once the issue
is resolved.

Movement of the inchworm makes up the bulk of the
expected issues because of its mechanical nature. The sys-
tem must be able to manage and identify movement prob-
lems and fix them where possible without affecting the
overall process.

HARDWARE

The system consists of multiple hardware components
connected to an NI CompactRIO (cRIO) real-time embed-
ded system for control and monitoring. A cRIO was chosen
because of successful implementations of cRIO-based con-
trol systems for other projects and because it provides a
relatively straightforward programming model through
LabVIEW.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV039

TUPV039C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

492 Device Control and Integrating Diverse Systems

Figure 2: Main hardware topology.

Chief among the devices to control are the laser system
and the mechanical robot that moves in the beam screen to
distribute the laser to the surface. All hardware is con-
nected to the cRIO through either TCP/IP connections, RS-
232 or analog signals (see table 1 and figure 2).

Table 1: Connected Devices

Device Connection

Robot TCP/IP

Laser TCP/IP (Telnet)
Laser shutter RS-232

Laser BDS RS-232

Extraction vacuum RS-232

Temperature / humidity RS-232

Flow and Pressure Analog NI 9205

End switches Analog NI 9205

Nitrogen supply valves Relay NI 9481

The inchworm robot’s movement scheme deserves some
further description because it is at the core of how move-
ments are defined in the software.

The robot is designed to move somewhat like a caterpil-
lar and is composed of a fixed frame which contains a mo-
bile internal sled. Both the frame and the sled can be
clamped by pushing against the beam screen, which fixes
its position. By activating the right clamps and moving the
sled in the right direction, we can create a sequence of
moves which advances the whole robot longitudinally
along the beam screen.

The laser and its distribution, beyond an initial configu-
ration of its settings, mostly turns into an on/off system.
Sequences will use this facility to activate and deactivate
the laser so that the treatment happens at the right times.

A nitrogen supply is used to pump nitrogen into the beam
screen at the treatment point. Previous research has shown
nitrogen to be an effective atmosphere for treatment of the
surface [3]. Because the nitrogen tanks will run out before
the full treatment is done, there are in fact 2 tanks. When
the pressure from one tank falls below a defined threshold,
the system automatically switches to the other tank and
emails the operators so that the inactive tank can be
switched out.

ARCHITECTURE

Control System Requirements

Control systems typically acquire many data points from
various connected sensors and devices. Software control
loops then use the acquired data to make decisions, which
will affect the software itself as well as control actuators.

We decided early on that an architecture in which data
would be at the center was the way to go. This leads to data
being shared mostly globally in the application, and while
shared data is often regarded as a danger, the small scope
of the software implementation led us to accept this as a
useful concept so that software procedures could more eas-
ily integrate a cross-section of application and hardware
functionality.

Application Architecture

The go-to template for most LabVIEW applications over
the past decade is the queued message handler (QMH).
While QMHs promote modularity, and, when done
properly, encourage code reuse, they can also make some
applications needlessly complicated. Debugging and read-
ing such code on embedded systems suffers from the many
layers between an action from a GUI and the code that ends
up running as a result. This is especially the case when
frameworks force or encourage the use of re-entrant VIs,
which cannot be debugged using LabVIEW’s traditional
debug tools, these tools being one of the main benefits of
using LabVIEW. Because of this limitation and the small
size of the application, it was decided to restrict the use of
frameworks and to focus on a more direct and ‘simple’ ap-
proach to programming, in which events and their reactions
are closer together.

Table 2 summarizes some of the most widely used Lab-
VIEW frameworks, evaluating them in terms of readabil-
ity, debuggability, prototyping ease and whether they can
be easily instantiated multiple times.

Table 2: Framework Comparison

 Reada-
bility

Debug-
gability

Proto-
typing

Multiple
instances

CVT [4] yes yes yes No

DCAF [5] With ex-
perience

Not di-
rectly

Takes
planning

Yes

QMH [6] Can be With ex-
perience

Nothing
built-in

Yes

DQMH [7] Lots of
boiler-
plate
code

Good
testing
tools

Scripting
tools for
quick crea-
tion of
functions

Cloneable
modules
share some
resources

Actor
Frame-
work [8]

With ex-
perience

Difficult
in Lab-
VIEW
real-time

Slow to
deploy

Yes

The application architecture includes a set of a few main
processes (external communication, event handling, writ-
ing to file) and a series of monitoring loops which read
from all the devices connected to the system. The monitor-
ing loops mostly only read data into the system and make
it available to the rest of the processes.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV039

Device Control and Integrating Diverse Systems

TUPV039

493

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Figure 3: Software architecture.

There are few processes in the application and their roles
are described here (see figure 3):

Message handler: Handles all incoming messages from
the GUI. Any time the operator performs an action on the
GUI, it gets sent to this process and for the most part is
handled directly.

Logging: As its name implies, logs run-time data to file
every few seconds so longer processes can be followed-up
on in case of issues.

Monitoring: Many monitoring loops are implemented,
one per device connected to the system. These processes
gather all the needed data points from all devices and stores
them in the central data storage for use by other processes.

Sequencer: The sequencer processes only run on-de-
mand, and only one at a time. They simulate a series of
requests and commands from the GUI so that the system
can perform treatments over several days or weeks. Se-
quences are described in more detail further on in this pa-
per.

IMPLEMENTATION

Because we are not using an established framework, it is
important that the required attributes are built in from the
beginning. The main components and attributes will be
covered in this section.

Security and Safety

Like all control systems, we need to make sure that the
system only does what it is supposed to. Any behavior that
is outside of that established explicitly should be caught
and the system should be put into a safe state. Indeed, if
any behavior has not been explicitly planned for, we as-
sume it is wrong and stop operation.

Because the movement of the robot is purely horizontal,
we do not need any special consideration when stopping
movement as it will simply stay in its position if we cut
power to the drives.

The laser, being the active agent of this system needs to
be considered more carefully because it will be damaging

if it does not switch off when needed. There are multiple
ways to prevent laser damage in this system. The laser can
be powered off by a software command or its integrated
shutter can be closed. Since a communication issue with
the laser would prevent either of these safety mechanisms
to be used, there is also an external laser shutter which can
be independently controlled.

The system implements a safe state, which is a series of
commands that is run when something unexpected hap-
pens. The main job of this routine is to stop all movement
and to close all laser shutters. It puts the system into a safe
mode from which it will only recover when the operator
decides it is safe to do so.

Error Handling

Error handling is especially important in long-running
embedded systems since operators are not monitoring the
system 24/7. All errors need to be caught and, unless a re-
covery procedure is known, they must immediately put the
system in a safe state.

Since there are many external hardware elements to be
monitored during the whole treatment procedure, we make
sure that communication to each device stays open and
available at all times. Any communication issue immedi-
ately puts the system in its safe state.

Data Transfer and Communication

Because we wanted to keep a more direct path between
events and their reactions, all processes in the application
can use the central data store. This enables all processes to
act in whichever way they deem necessary but introduces
a higher risk of running into race conditions.

To avoid race conditions, we have a good definition of
which process writes to which data point. Obviously, for
data coming from external devices, only the respective
monitoring loop writes that data.

All data in the application can be separated into 3 cate-
gories depending on how that data should be handled when
restarting the application.

Configuration data is read-only data that comes from a
configuration file on disk. This represents fixed configura-
tions that do not change and which the application assumes
will never change. We find such information as the radius
of a beam-screen or the hardware address of an external
device to control.

Settings represent data that the user can modify, and
which can be saved to file. This allows the operator to de-
fine the details of the treatment and how the attached de-
vices should run. These values will be remembered at sub-
sequent launches of the application.

Run-time data is the collection of all other data the ap-
plication keeps track of while it is running. Most of the data
is contained here. The publishing process saves the rele-
vant data points to a file during operation.

All 3 of these data sets are passed around the application
to all processes and constitute what the application calls the
data environment.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV039

TUPV039C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

494 Device Control and Integrating Diverse Systems

Environment
The environment contains all the data needed for the var-

ious processes of the application to run properly. It is
passed around as a Data Value Reference (DVR) which al-
lows concurrent access throughout the application. One of
the reasons for choosing to store this data like this rather
than using existing solutions like the CVT (Current Value
Table) is that this solution allows us to potentially run mul-
tiple instances of the application on the same hardware. We
currently only run a single instance, but there were discus-
sions at the beginning to run multiple systems from the
same cRIO.

Giving each process access to the full dataset of the ap-
plication means that each process can be more intelligent
in making decisions because it has more context.

Figure 4: Application layers.

Actions

Each external hardware component is represented in the
software by a library which encapsulates the communica-
tion with the device. These functions have no knowledge
of the application they run in and therefore cannot be relied
on to coordinate anything but the communication with that
device.

To integrate these devices into a complete system, an ex-
tra layer is used above these libraries to coordinate them
with each other. The first such layer is called the action
layer. Each action takes in the environment data as an input
and does something that the system needs to do (Figure 4).
This can range from a low-level encapsulation of a single
command to a single device, to a more complex one which
reads data from multiple devices and coordinates their ac-
tions. The processes box represents the processes described
at the end of the architecture description (monitoring, log-
ging, communicating processes…). The processes mainly
use the aforementioned actions to perform their tasks.

Sequences

To run the system autonomously, it is necessary to have
some controlling process that sequences the steps neces-
sary for a treatment run. Such processes are called se-
quences and they are only run on-demand when the opera-
tor sends the command. In figure 4 they run at the top-level

processes category and have full access to the environment.

Figure 5: Line sequence logic.

More than one sequence is designed, but only one can
ever run at any given time. The sequence takes control of
the system and uses the data and actions to run it through
the steps as the sequence defines them. When a sequence
is started, the communication interface ignores most com-
mands from the GUI because they would otherwise inter-
fere with the sequence. In fact, sequences can be thought
of as equivalent to the GUI + operator. They use the same
actions as the GUI commands and simply wrap them up
into a process which waits for events and reacts to them.

Sequences must also be implemented such that issues
with the movement of the inchworm robot are properly
handled. At each movement stage of the robot, care is taken
to test for various outcomes, like getting stuck, so that it
does not continue treatment.

Multiple sequences have been implemented to test their
relative treatment effectiveness and are summarized here:

Spiral, as its name implies, moves the laser nozzle in a
spiral fashion, in which it slowly advances while rotating
the nozzle. Settings such as speed or spiral pitch allow the
operator to make it more or less loose.

Line creates a movement similar to the spiral sequence,
but where the forward motion is decoupled from the rota-
tion. In this configuration it rotates with treatment, then ad-
vances without treatment, then rotates again to continue the
treatment (Figure 5).

Longitudinal motion is a variation of the line sequence
in which the treatment is done while moving linearly. Once
it reaches the length to treat, it rotates slightly and starts
treatment again.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV039

Device Control and Integrating Diverse Systems

TUPV039

495

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Zigzag is a spiral sequence variation in which it does not
spiral out in a single rotational direction. The rotation goes
back and forth while advancing the linear stage.

Move does a simple linear move of the robot to a new
position and does not involve any treatment. It is useful for
movements longer than the range of the robot sled because
it sequences the necessary clamping and move details.

User Interface

The user interface runs on a separate PC connected to the
same network as the other devices of the system. It con-
nects to the ‘event handler’ process on the cRIO to send
commands to the system. The event handler simply exe-
cutes the commands as they are received if no sequence is
running.

Communication between the PC and the cRIO is made
with the AMC (Asynchronous Messaging Communica-
tion) library [9], which allows multiple systems to send
messages to each other using a UDP connection.

Commands are sent from the PC to the cRIO to execute
the above-mentioned actions and sequences. All data from
the environment is constantly sent from the cRIO to the PC
once it is connected so that it can display the current state
of the system and help the operator understand what is cur-
rently happening.

Reliability

Because the system needs to run for days at a time with
minimal intervention, it is extremely important that it per-
forms reliably. Several features of the software implemen-
tation facilitate this and were mentioned throughout the pa-
per. The main points are summarized here for convenience.

The GUI can be connected and disconnected from the
device without affecting it, thus keeping it out of the loop
for the core functionality.

A safe state has been implemented which sets all hard-
ware to a desired state. Any unplanned error puts the sys-
tem in this state so that an operator or expert can check the
system before running again.

Because there are so few layers of software, actions are
closely linked to triggering events, leading to fewer
chances for errors and mistakes to appear.

Preliminary reliability tests in the absence of full hard-
ware integration have shown that it is able to run a se-
quence reliably for 2 days, after which it was stopped be-
cause it performed dozens of cycles of the sequence with-
out issue, as indicated by the event log file. As long as the
laser isn’t present, a longer test won’t yield more useful re-
sults at this time. Further tests are planned when the full
system will be assembled.

CONCLUSION

We described the architecture and implementation
choices used for the project. A custom-made data and com-
munication structure helped simplify the overall complex-
ity of the software so that we could focus more on direct
readability and benefit from LabVIEW’s built-in debug-
ging tools.

While the system is not yet operational (not all compo-
nents are ready for integration), we have benefitted from
the structure of the code, allowing for quick debugging
while testing integration and sequences. Because of the
smaller code footprint, it is also much faster to deploy and
test variations of the software while fine-tuning behavior.

It is also important to note that while this structure is
used successfully in this project, we must stress that it is
very likely to show its limits if functionality were to get
bigger and more complex. Its application in this project
was made possible by the fact that no added complexity is
foreseen. Another reason why we could safely rely on a
simpler architecture is that if the needs do arise, we can
quite easily replace this simple structure with something
more complex.

FUTURE IMPROVEMENTS

As it stands, the project is ready for integration of final
components, and it is not expected that anything big will
need to change. Future improvements to the system will
likely be in the details and timing of the sequences, which
we’ve modularized to a simple state machine architecture.

REFERENCES

neered surface structures for electron cloud mitigation”, in
Proc. IPAC'18, Vancouver (BC), Canada, Apr.-May 2018,

 pp. 1220-1223. doi: 10.18429/JACoW-IPAC2018-TUZGBE3

[2] R. Valizadeh et al., “Reduction of secondary electron yield
for E-cloud mitigation by laser ablation surface engineering”,
Appl. Phys. Lett. 105, 231605 (2014) .

[3] S. Calatroni et al., Optimization of the secondary electron “
yield of laser-structured copper surfaces at room and
cryogenic temperature”, Phys. Rev. Accel. Beams 23, 033101

 (2020).
[4] https://forums.ni.com/t5/Reference-Design-

Content/LabVIEW-Current-Value-Table-CVT-
Library/tap/3514251

[6] https://www.ni.com/en-us/support/documentation
/supplemental/21/using-a-queued-message-
handler-in-labview.html

[5] https://www.ni.com/en-us/innovations/white-
papers/18/introduction-to-the-distributed-
control-and-automation-framework.html

[7] https://delacor.com/products/dqmh/
[8] ni.com/actorframework
[9] https://forums.ni.com/t5/Reference-Design-

Content/Asynchronous-Message-Communication-AMC
-Library/ta-p/3494283

[1] M. Sitko et al., “Towards the implementation of laser engi-

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV039

TUPV039C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

496 Device Control and Integrating Diverse Systems

