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Abstract 
Secondary electron yield (SEY) of beam-screens in the 

LHC puts limits on the performance of the accelerator. To 
ramp up the luminosity for the HiLumi LHC project, the 
vacuum surface coatings team are coming up with ways to 
treat the surfaces to control the electron cloud and bring the 
SEY down to acceptable levels. These treatments can take 
days to weeks and need to work reliably to be sure the sur-
faces are not damaged. An embedded control and monitor-
ing system based on a CompactRIO is being developed to 
run these processes in a reliable way [1]. 

This paper describes the techniques used to create a Lab-
VIEW-based real-time embedded system that is reliable as 
well as easy to read and modify. We will show how simpler 
approaches can in some situations yield better solutions.  

PROJECT AND BACKGROUND 

The objective of the LESS (Laser Engineered Surface 
Structures) project is the commissioning of an in-situ laser 
surface treatment conceived to mitigate electron clouds in 
the Large Hadron Collider (LHC) at CERN. Secondary 
electrons are multiplied when they interact with the vac-
uum chamber walls of the accelerator and consequently 
form electron clouds that can negatively affect its perfor-
mance.  

The secondary electron emission of a surface can be re-
duced by surface roughening. In this project, pulsed laser 
processing is applied to generate micro and nanostructures 
on the inner vacuum chamber surface that surrounds the 
proton beam. In this way, secondary electrons are captured 
by the surface geometry. The resulting structures and the 
performance of the surface strongly depend on the pro-
cessing parameters, such as the laser power, the scanning 
speed, and the line distance, as well as on the scanning pat-
tern [2]. 

The final treatment must be applied in-situ in the already 
existing accelerator and the system must be capable of 
treating tens of meters of vacuum pipe autonomously. The 
dedicated setup to perform this is composed of a picosec-
ond pulsed laser source and a Beam Delivery System 
(BDS) that shapes and couples the laser beam into an opti-
cal fiber, which guides the laser light through an inchworm 
robot where the beam is decoupled through a rotating noz-
zle (see figure 1). The translational movements of the robot 
are driven by a pneumatic clamping system. 

 

Figure 1: Longitudinal view of the inchworm inside a beam 

screen. The laser nozzle in the center points upwards. a. 

inchworm, b. nozzle, c. beam screen. 

This setup requires a control system that communicates 
with each component and allows flexible parameter 
changes. The system must be reliable enough to run for 
many days unattended. For example, in a spiral treatment 
format (described later) we would need to treat 16m of 
beam screen while advancing by 50µm approximately 
every 5s. This would take up to 3 weeks. Similar times are 
expected for other sequences. 

The system must also manage concurrent communica-
tion with all the components which make up the system and 
ensure that any issue is either resolved, or the system is 
safely stopped so the treatment can continue once the issue 
is resolved. 

Movement of the inchworm makes up the bulk of the 
expected issues because of its mechanical nature. The sys-
tem must be able to manage and identify movement prob-
lems and fix them where possible without affecting the 
overall process. 

HARDWARE 

The system consists of multiple hardware components 
connected to an NI CompactRIO (cRIO) real-time embed-
ded system for control and monitoring. A cRIO was chosen 
because of successful implementations of cRIO-based con-
trol systems for other projects and because it provides a 
relatively straightforward programming model through 
LabVIEW. 
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Figure 2: Main hardware topology. 

Chief among the devices to control are the laser system 
and the mechanical robot that moves in the beam screen to 
distribute the laser to the surface. All hardware is con-
nected to the cRIO through either TCP/IP connections, RS-
232 or analog signals (see table 1 and figure 2). 

Table 1: Connected Devices 

Device Connection 

Robot TCP/IP 

Laser TCP/IP (Telnet) 
Laser shutter RS-232 

Laser BDS RS-232 

Extraction vacuum RS-232 

Temperature / humidity RS-232 

Flow and Pressure Analog NI 9205 

End switches Analog NI 9205 

Nitrogen supply valves Relay NI 9481 

 

The inchworm robot’s movement scheme deserves some 
further description because it is at the core of how move-
ments are defined in the software. 

The robot is designed to move somewhat like a caterpil-
lar and is composed of a fixed frame which contains a mo-
bile internal sled. Both the frame and the sled can be 
clamped by pushing against the beam screen, which fixes 
its position. By activating the right clamps and moving the 
sled in the right direction, we can create a sequence of 
moves which advances the whole robot longitudinally 
along the beam screen. 

The laser and its distribution, beyond an initial configu-
ration of its settings, mostly turns into an on/off system. 
Sequences will use this facility to activate and deactivate 
the laser so that the treatment happens at the right times. 

A nitrogen supply is used to pump nitrogen into the beam 
screen at the treatment point. Previous research has shown 
nitrogen to be an effective atmosphere for treatment of the 
surface [3]. Because the nitrogen tanks will run out before 
the full treatment is done, there are in fact 2 tanks. When 
the pressure from one tank falls below a defined threshold, 
the system automatically switches to the other tank and 
emails the operators so that the inactive tank can be 
switched out. 

ARCHITECTURE 

Control System Requirements 

Control systems typically acquire many data points from 
various connected sensors and devices. Software control 
loops then use the acquired data to make decisions, which 
will affect the software itself as well as control actuators.  

We decided early on that an architecture in which data 
would be at the center was the way to go. This leads to data 
being shared mostly globally in the application, and while 
shared data is often regarded as a danger, the small scope 
of the software implementation led us to accept this as a 
useful concept so that software procedures could more eas-
ily integrate a cross-section of application and hardware 
functionality. 

Application Architecture 

The go-to template for most LabVIEW applications over 
the past decade is the queued message handler (QMH). 
While QMHs promote modularity, and, when done 
properly, encourage code reuse, they can also make some 
applications needlessly complicated. Debugging and read-
ing such code on embedded systems suffers from the many 
layers between an action from a GUI and the code that ends 
up running as a result. This is especially the case when 
frameworks force or encourage the use of re-entrant VIs, 
which cannot be debugged using LabVIEW’s traditional 
debug tools, these tools being one of the main benefits of 
using LabVIEW. Because of this limitation and the small 
size of the application, it was decided to restrict the use of 
frameworks and to focus on a more direct and ‘simple’ ap-
proach to programming, in which events and their reactions 
are closer together. 

Table 2 summarizes some of the most widely used Lab-
VIEW frameworks, evaluating them in terms of readabil-
ity, debuggability, prototyping ease and whether they can 
be easily instantiated multiple times. 

Table 2: Framework Comparison 

 Reada-
bility 

Debug-
gability 

Proto-
typing 

Multiple 
instances 

CVT [4] yes yes yes No 

DCAF [5] With ex-
perience 

Not di-
rectly 

Takes 
planning 

Yes 

QMH [6] Can be With ex-
perience 

Nothing 
built-in 

Yes 

DQMH [7] Lots of 
boiler-
plate 
code 

Good 
testing 
tools 

Scripting 
tools for 
quick crea-
tion of 
functions 

Cloneable 
modules 
share some 
resources 

Actor 
Frame-
work [8] 

With ex-
perience 

Difficult 
in Lab-
VIEW 
real-time 

Slow to 
deploy 

Yes 

 

The application architecture includes a set of a few main 
processes (external communication, event handling, writ-
ing to file) and a series of monitoring loops which read 
from all the devices connected to the system. The monitor-
ing loops mostly only read data into the system and make 
it available to the rest of the processes. 
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Figure 3: Software architecture. 

 

There are few processes in the application and their roles 
are described here (see figure 3): 

Message handler: Handles all incoming messages from 
the GUI. Any time the operator performs an action on the 
GUI, it gets sent to this process and for the most part is 
handled directly. 

Logging: As its name implies, logs run-time data to file 
every few seconds so longer processes can be followed-up 
on in case of issues. 

Monitoring: Many monitoring loops are implemented, 
one per device connected to the system. These processes 
gather all the needed data points from all devices and stores 
them in the central data storage for use by other processes. 

Sequencer: The sequencer processes only run on-de-
mand, and only one at a time. They simulate a series of 
requests and commands from the GUI so that the system 
can perform treatments over several days or weeks. Se-
quences are described in more detail further on in this pa-
per. 

IMPLEMENTATION 

Because we are not using an established framework, it is 
important that the required attributes are built in from the 
beginning. The main components and attributes will be 
covered in this section. 

Security and Safety 

Like all control systems, we need to make sure that the 
system only does what it is supposed to. Any behavior that 
is outside of that established explicitly should be caught 
and the system should be put into a safe state. Indeed, if 
any behavior has not been explicitly planned for, we as-
sume it is wrong and stop operation. 

Because the movement of the robot is purely horizontal, 
we do not need any special consideration when stopping 
movement as it will simply stay in its position if we cut 
power to the drives. 

The laser, being the active agent of this system needs to 
be considered more carefully because it will be damaging 

if it does not switch off when needed. There are multiple 
ways to prevent laser damage in this system. The laser can 
be powered off by a software command or its integrated 
shutter can be closed. Since a communication issue with 
the laser would prevent either of these safety mechanisms 
to be used, there is also an external laser shutter which can 
be independently controlled. 

The system implements a safe state, which is a series of 
commands that is run when something unexpected hap-
pens. The main job of this routine is to stop all movement 
and to close all laser shutters. It puts the system into a safe 
mode from which it will only recover when the operator 
decides it is safe to do so. 

Error Handling 

Error handling is especially important in long-running 
embedded systems since operators are not monitoring the 
system 24/7. All errors need to be caught and, unless a re-
covery procedure is known, they must immediately put the 
system in a safe state. 

Since there are many external hardware elements to be 
monitored during the whole treatment procedure, we make 
sure that communication to each device stays open and 
available at all times. Any communication issue immedi-
ately puts the system in its safe state. 

Data Transfer and Communication 

Because we wanted to keep a more direct path between 
events and their reactions, all processes in the application 
can use the central data store. This enables all processes to 
act in whichever way they deem necessary but introduces 
a higher risk of running into race conditions. 

To avoid race conditions, we have a good definition of 
which process writes to which data point. Obviously, for 
data coming from external devices, only the respective 
monitoring loop writes that data. 

All data in the application can be separated into 3 cate-
gories depending on how that data should be handled when 
restarting the application. 

Configuration data is read-only data that comes from a 
configuration file on disk. This represents fixed configura-
tions that do not change and which the application assumes 
will never change. We find such information as the radius 
of a beam-screen or the hardware address of an external 
device to control. 

Settings represent data that the user can modify, and 
which can be saved to file. This allows the operator to de-
fine the details of the treatment and how the attached de-
vices should run. These values will be remembered at sub-
sequent launches of the application. 

Run-time data is the collection of all other data the ap-
plication keeps track of while it is running. Most of the data 
is contained here. The publishing process saves the rele-
vant data points to a file during operation. 

All 3 of these data sets are passed around the application 
to all processes and constitute what the application calls the 
data environment. 
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Environment 
The environment contains all the data needed for the var-

ious processes of the application to run properly. It is 
passed around as a Data Value Reference (DVR) which al-
lows concurrent access throughout the application. One of 
the reasons for choosing to store this data like this rather 
than using existing solutions like the CVT (Current Value 
Table) is that this solution allows us to potentially run mul-
tiple instances of the application on the same hardware. We 
currently only run a single instance, but there were discus-
sions at the beginning to run multiple systems from the 
same cRIO. 

Giving each process access to the full dataset of the ap-
plication means that each process can be more intelligent 
in making decisions because it has more context.  

 

Figure 4: Application layers. 

Actions 

Each external hardware component is represented in the 
software by a library which encapsulates the communica-
tion with the device. These functions have no knowledge 
of the application they run in and therefore cannot be relied 
on to coordinate anything but the communication with that 
device. 

To integrate these devices into a complete system, an ex-
tra layer is used above these libraries to coordinate them 
with each other. The first such layer is called the action 
layer. Each action takes in the environment data as an input 
and does something that the system needs to do (Figure 4). 
This can range from a low-level encapsulation of a single 
command to a single device, to a more complex one which 
reads data from multiple devices and coordinates their ac-
tions. The processes box represents the processes described 
at the end of the architecture description (monitoring, log-
ging, communicating processes…). The processes mainly 
use the aforementioned actions to perform their tasks. 

Sequences 

To run the system autonomously, it is necessary to have 
some controlling process that sequences the steps neces-
sary for a treatment run. Such processes are called se-
quences and they are only run on-demand when the opera-
tor sends the command. In figure 4 they run at the top-level 

processes category and have full access to the environment. 

 

Figure 5: Line sequence logic. 

More than one sequence is designed, but only one can 
ever run at any given time. The sequence takes control of 
the system and uses the data and actions to run it through 
the steps as the sequence defines them. When a sequence 
is started, the communication interface ignores most com-
mands from the GUI because they would otherwise inter-
fere with the sequence. In fact, sequences can be thought 
of as equivalent to the GUI + operator. They use the same 
actions as the GUI commands and simply wrap them up 
into a process which waits for events and reacts to them. 

Sequences must also be implemented such that issues 
with the movement of the inchworm robot are properly 
handled. At each movement stage of the robot, care is taken 
to test for various outcomes, like getting stuck, so that it 
does not continue treatment. 

Multiple sequences have been implemented to test their 
relative treatment effectiveness and are summarized here: 

Spiral, as its name implies, moves the laser nozzle in a 
spiral fashion, in which it slowly advances while rotating 
the nozzle. Settings such as speed or spiral pitch allow the 
operator to make it more or less loose. 

Line creates a movement similar to the spiral sequence, 
but where the forward motion is decoupled from the rota-
tion. In this configuration it rotates with treatment, then ad-
vances without treatment, then rotates again to continue the 
treatment (Figure 5). 

Longitudinal motion is a variation of the line sequence 
in which the treatment is done while moving linearly. Once 
it reaches the length to treat, it rotates slightly and starts 
treatment again. 
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Zigzag is a spiral sequence variation in which it does not 
spiral out in a single rotational direction. The rotation goes 
back and forth while advancing the linear stage. 

Move does a simple linear move of the robot to a new 
position and does not involve any treatment. It is useful for 
movements longer than the range of the robot sled because 
it sequences the necessary clamping and move details. 

User Interface 

The user interface runs on a separate PC connected to the 
same network as the other devices of the system. It con-
nects to the ‘event handler’ process on the cRIO to send 
commands to the system. The event handler simply exe-
cutes the commands as they are received if no sequence is 
running. 

Communication between the PC and the cRIO is made 
with the AMC (Asynchronous Messaging Communica-
tion) library [9], which allows multiple systems to send 
messages to each other using a UDP connection. 

Commands are sent from the PC to the cRIO to execute 
the above-mentioned actions and sequences. All data from 
the environment is constantly sent from the cRIO to the PC 
once it is connected so that it can display the current state 
of the system and help the operator understand what is cur-
rently happening. 

Reliability 

Because the system needs to run for days at a time with 
minimal intervention, it is extremely important that it per-
forms reliably. Several features of the software implemen-
tation facilitate this and were mentioned throughout the pa-
per. The main points are summarized here for convenience. 

The GUI can be connected and disconnected from the 
device without affecting it, thus keeping it out of the loop 
for the core functionality. 

A safe state has been implemented which sets all hard-
ware to a desired state. Any unplanned error puts the sys-
tem in this state so that an operator or expert can check the 
system before running again. 

Because there are so few layers of software, actions are 
closely linked to triggering events, leading to fewer 
chances for errors and mistakes to appear. 

Preliminary reliability tests in the absence of full hard-
ware integration have shown that it is able to run a se-
quence reliably for 2 days, after which it was stopped be-
cause it performed dozens of cycles of the sequence with-
out issue, as indicated by the event log file. As long as the 
laser isn’t present, a longer test won’t yield more useful re-
sults at this time. Further tests are planned when the full 
system will be assembled. 

CONCLUSION 

We described the architecture and implementation 
choices used for the project. A custom-made data and com-
munication structure helped simplify the overall complex-
ity of the software so that we could focus more on direct 
readability and benefit from LabVIEW’s built-in debug-
ging tools. 

While the system is not yet operational (not all compo-
nents are ready for integration), we have benefitted from 
the structure of the code, allowing for quick debugging 
while testing integration and sequences. Because of the 
smaller code footprint, it is also much faster to deploy and 
test variations of the software while fine-tuning behavior. 

It is also important to note that while this structure is 
used successfully in this project, we must stress that it is 
very likely to show its limits if functionality were to get 
bigger and more complex. Its application in this project 
was made possible by the fact that no added complexity is 
foreseen. Another reason why we could safely rely on a 
simpler architecture is that if the needs do arise, we can 
quite easily replace this simple structure with something 
more complex. 

FUTURE IMPROVEMENTS 

As it stands, the project is ready for integration of final 
components, and it is not expected that anything big will 
need to change. Future improvements to the system will 
likely be in the details and timing of the sequences, which 
we’ve modularized to a simple state machine architecture. 
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