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Abstract 
Devices in CERN's accelerator complex are controlled 

through individual requests, which change settings 
atomically on single Devices. Individual Devices are 
therefore controlled transactionally. Operators often need 
to apply a set of changes which affect multiple devices. 
This is achieved by sending requests in parallel, in a 
minimum amount of time. However, if a request fails, the 
Control system ends up in an undefined state, and 
recovering is a time-consuming task. Furthermore, the lack 
of synchronisation in the application of new settings may 
lead to the degradation of the beam characteristics, because 
of settings being partially applied. To address these issues, 
a protocol was developed to support distributed 
transactions and commit synchronisation in the CERN 
Control system, which was then implemented in CERN's 
real-time frameworks. We describe what this protocol 
intends to solve and its limitations. We also delve into the 
real-time framework implementation and how developers 
can benefit from the 2-phase commit to leverage hardware 
features such as double buffering, and from the commit 
synchronisation allowing settings to be changed safely 
while the accelerator is operational.  

DISTRIBUTED TRANSACTIONS: 
INTRODUCTION 

In CERN’s accelerator control system, clients address 
devices individually with a request made on a property of 
a device. To modify a property across multiple devices, 
requires as many requests as there are devices. Until all the 
requests are made, an accelerator is in an undefined state. 
Moreover, if any of the requests fail, additional actions are 
required to understand why it failed and how to fix it, 
leaving the accelerator in an undefined state for a 
potentially large amount of time. 

In order to solve this problem, distributed transactions 
were designed and implemented in CERN’s accelerator 
control system.  
 

GOALS, LIMITATIONS, AND DESIGN OF 
DISTRIBUTED TRANSACTIONS 

The goal of distributed transactions is to ensure that a set 
of modifications occurring on distributed nodes are either 
completely recorded, or not at all. A node can be anything, 
but the first example that comes to mind is a database. This 
behaviour is typically achieved by using a two-phase 
commit. The generic workflow is as follows: 

• A transaction is opened with the different 
participating nodes; 

• Modifications are made on the different nodes in 
any order and over an unspecified period of time; 

• The commit then occurs in two steps: 
1. A commit is sent to all the nodes which 

perform the required checks and ensure 
that locally there are no errors; 

2. If no errors are reported by the first commit, 
a second one, confirming the wish to 
commit is sent. From then onwards, the 
modifications are permanently recorded; 

3. If, on the other hand, errors are reported 
during the first-phase commit, the 
transaction is rolled back on all the nodes 
and no modifications are recorded. 

DISTRIBUTED TRANSACTIONS IN 
ACCELERATOR CONTROLS 

In the context of CERN’s accelerator controls, the nodes 
are the low-level equipment controllers, the so-called 
Front-End Computers (FECs). The modifications are 
changes of the underlying equipment settings. A nominal 
transaction for CERN accelerator controls contains the 
following steps: 

• The client opens a transaction with a unique 
transaction ID on all the devices it plans to modify, 
via a synchronous middleware call to a standardised 
property; 

• The client modifies the settings via a synchronous 
middleware call. Again, the order and period of time 
are unspecified;  

• The client asks the devices to test their new settings 
via a synchronous middleware call to a standardised 
property (TRASACTION.TEST);  

• If all the devices report a successful test, the client 
commands the timing system to broadcast a commit 
event for the transaction. Upon reception, the FECs 
permanently commit the new settings; 

• Otherwise, if one or more devices report an error 
during the test, the client asks the timing system to 
broadcast a roll-back event which will trigger the 
discard of the settings set with the corresponding 
transaction ID. 

In the workflow described above, several 
implementation choices are already visible. One key 
element is the way to transport the final commit and roll-
back. CERN's timing system, whose purpose is, among 
other things, to distribute events to the whole accelerator 
complex, is used to trigger a commit or rollback of a 
transaction. Even though the transactions are not meant to 
synchronise the moments at which the commits are 
performed, by using the timing system to transport these 
two events, we combine the possibilities offered by a 
global commit event with the synchronisation possibilities 
of the timing system. 
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In addition, mainly for test purposes, the client may 
trigger a commit or rollback event without using the timing 
system. This is done by telling every device in the 
transaction to commit or rollback via another middleware 
call to the TRANSACTION.COMMIT or 
TRANSACTION.ROLLBACK properties. It is 
acknowledged that in this case, the commit loses its 
atomicity, since the client is limited to regular TCP 
connections to do this, without any multicast possibility. 

It should be highlighted that, on the low-level equipment 
controllers (FECs), a single server typically handles many 
devices. Clients do not use this information in any way and 
must treat each device regardless of the FEC they are 
handled by. However, this has some implications on the 
design of the server-side commit process. The 
implementation of the transaction protocol in a device 
server, where a transaction is processed as a whole entity 
(in opposition to device by device), is explained in the 
following sections. Why such a design choice was made, 
its constraints, and how the technical challenges were 
solved are also described. 

DISTRIBUTED TRANSACTIONS 
IMPLEMENTATION IN FESA 

The Front-End Software Architecture (FESA) 
framework is used to do real-time programming to control 
accelerator hardware in CERN’s control system. It offers 
the possibility to react to specific events through an API 
giving access to all the concerned devices at once. Many 
systems developed with FESA are a composition of 
multiple devices, and if settings are changed on multiple 
devices within a transaction, this must be seen as one 
change of all the settings, rather than multiple changes of 
individual devices. 

Since clients are not aware of this (they always treat 
devices as individual entities), this must be transparently 
implemented in FESA. In addition, a FESA device server 
can be run either as a single process (see Fig. 1) or as two 
separate processes, called server process and real-time 
process, which interact through a shared memory and 
several message queues (see Fig. 2). 

 
Figure 1: FESA server running as a single process. 

 

 
 

Figure 2: FESA server running as two processes. 
 
This has several implications: 
 

• FESA must be able to uniquely identify and pass 
the data from a transaction across processes. 

• Since the transaction is opened sequentially on all 
the devices by the client, FESA cannot know in 
advance the size of the settings that will be 
modified in the transaction. 

• When a transaction is tested by the client, test 
requests will happen sequentially on every device. 
FESA must test the full transaction on the first 
received test request and ignore subsequent test 
requests on other devices. 

 
Many failures can happen during a distributed 

transaction (hardware error, device server crash, network 
issue, timing system issue). A commit event is thus not 
guaranteed to be processed by all the devices in the 
transaction. Because of this, the processing of the commit 
event by the devices should be as small an operation as 
possible, e.g., a buffer swap. Devices must use the test 
request to prepare for an upcoming commit or rollback. 
Consequently, the implementation does not guarantee the 
state of the system in case of a failure during the commit. 
Furthermore, due to the nature of the timing system, it is 
difficult to provide feedback to the client in such a case. 
Some solutions exist to mitigate this problem [1], at the 
cost of an increased complexity. 

Finally, in order to provide a transaction implementation 
across as many devices as possible, it was decided that 
FESA would offer two modes: 

 
• A transparent mode, with no code modification 

required by the users, but without the possibility to 
leverage some hardware capabilities such as double 
buffering. This is intended for cases where 
validation of settings is done entirely in software, 
which guarantees that commit events will 
successfully apply the new settings unless an 
unpredictable hardware error occurs. 

• An advanced mode, which requires the user to 
implement entry points for test, commit, and 
rollback. In this mode, the test event can be used to 
prepare the hardware, for example by preparing a 
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buffer containing the new settings to apply, and the 
commit event can be used to trigger a buffer swap, 
applying the new settings atomically in a very short 
time. 

 
These two modes are mutually exclusive in a FESA 

process. 

TRANSACTIONS IMPLEMENTATION IN 
FESA: TRANSPARENT MODE 

In order to fully understand the implementation of 
transparent transactions, it is first necessary to understand 
how a normal modification of a setting works (outside of a 
transaction): 

 
• The client sends a new setting. 
• Its validity is checked by some user code, which 

may accept or reject the new value. 
• If the new setting is valid, the memory containing 

the setting values is updated with the new value [2]. 
If the setting needs to be applied immediately, an 
event is sent to the real-time FESA process, possibly 
across process boundaries if running in split mode. 

• The event is received and processed by the real-time 
part, which applies the new setting on the hardware. 

 
If the setting is instead modified within a transaction, the 

sequence is as follows: 
• The client sends a new setting. 
• Its validity is checked by some user code. 
• If the new setting is valid, its value is saved in a 

buffer dedicated to this transaction. If the setting 
needs to be applied as soon as the transaction is 
committed, an event is prepared and saved in the 
transaction buffer. 

• The client sends other settings, and the same process 
is repeated until a commit or rollback event happens 
(in transparent mode, the test event is ignored, as the 
validity of settings has been checked already). 

• If a commit event happens, the memory containing 
the setting values is updated with the buffered 
setting values. All the buffered events are triggered. 

• The events are received and processed by the real-
time part, which applies the new settings on the 
hardware. 

 
Thus, in transparent mode, the modification of settings 

within a transaction are equivalent to modifying all the 
settings in rapid sequence. 

While the transparent mode offers the main advantage of 
being usable without user code modification, it does not 
cover one key element of the nominal sequence which is 
the possibility for Sets to be done in an unspecified order. 
To support this, a more sophisticated implementation is 
required, the advanced mode. 

 

TRANSACTION IMPLEMENTATION IN 
FESA: ADVANCED MODE 

The goal of advanced mode is to allow the user to benefit 
from the 2-phase commit (test, then commit) to test new 
settings only after they have all been set, and to leverage 
the capacity of the controlled hardware to prepare for a 
commit. 

A fictitious but simple example (which can be applied to 
many other use cases) can demonstrate why this is 
important: 

Consider a lab-bench power supply, which has a power 
output limit of 300 watts. It is connected to a FESA process 
which can modify its voltage and maximum current 
through a serial connection. 

When a new voltage or maximum current is requested 
by a client, the user code must check that the product of the 
two does not exceed 300 watts. Assume that it is currently 
configured to 5V and a maximum of 20A. 

If a client wants to set it to 30V and 5A, without the 
transactions, it must be careful to first set the maximum 
current, otherwise the maximum power will exceed 300W 
in the transition (30V times 20A). This requires the client 
to know about this logic, which is not feasible in the case 
of automated settings management. 

The transaction implementation in advanced mode 
solves this problem by delaying the validation of the 
settings until the test request happens. The user code can 
still reject a setting value as soon as it is sent if it is invalid 
on its own (e.g., setting a voltage of 10000V), and in 
addition, it can check the validity of the settings 
combination in the code that is called when a test event 
happens. The API provided by FESA in that case 
transparently provides the values stored in the transaction 
buffer if present, or previously known otherwise. 

Now also assume that the power supply can receive its 
new voltage and maximum current settings but wait for a 
further command to apply them. In addition to ensuring the 
settings validity, the implementation of the test event 
would then send the new values to the power supply. If 
anything goes wrong at this point, it is still possible to 
signal a test failure to the client, who can roll back the 
transaction, or try with other setting values. 

Finally, when the commit event arrives, the only thing 
left to do is to tell the power supply to apply the new 
settings. The possible failure surface has thereby been 
reduced to the strict minimum, allowing the clients to 
cancel the transaction if anything else goes wrong. 

While this example is voluntarily simple, it applies to a 
lot of hardware used in accelerators, such as power 
converters, digital oscilloscopes, and much more. 

ADVANCED MODE OUTSIDE OF A 
TRANSACTION 

As explained above, transactions in advanced mode 
require the user to adapt their code to handle the test, 
commit and rollback events. However, the settings can still 
be changed outside of a transaction, in which case they 
need to be applied immediately. 
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For such cases, FESA simulates a transaction: the 
request to modify a setting will cause FESA to generate a 
test event, and if it is successful, a commit event. If the test 
event fails, the new setting value will not be applied, and 
the client will receive the test event error message, 
informing why the new setting could not be applied. 

While this approach may seem complex at first, it has 
many advantages: the complexity remains in the FESA 
framework, where it is thoroughly tested. The user only has 
to write a single implementation of the code which 
communicates with the hardware, and as a result only has 
to test one code path. 

TRANSACTIONS ACROSS PROCESS 
BOUNDARIES 

The FESA framework may be used in what is called 
"split mode". This is meant for highly critical systems, 
which should always be up and running. In this mode, the 
real-time part of a FESA deployment is launched in a 
process, while the server part, responsible for handling 
client requests, runs in a separate process. This can be seen 
as a way to sandbox the real-time process. 

The two processes communicate using standard IPC 
methods: shared memory, message queues, shared mutexes 
and condition variables. From a user point of view, nothing 
changes feature-wise, but there are a few restrictions, 
mainly due to the fact that pointers are not valid across 
process boundaries. 

In order to implement the transactions feature in FESA, 
these considerations had to be taken into account. As a 
result, the transaction buffer, allocated when a transaction 
is opened, is a dynamic structure which cannot contain 
pointers. The devices and their settings are given unique 
indices, allowing to identify them across the two processes 
of a split mode deployment. Every transaction buffer also 
contains a mutex and a condition variable, which are used 
to signal the completion of the test, commit, and rollback 
events. 

There is another consequence of running in split mode: 
the memory allocated for the transaction buffer must be 
contiguous, as it is mapped between the two FESA 
processes using the mmap system call, which takes an 
address and a size. However, it is not possible to know in 
advance how much memory will be needed for the 
transaction buffer: the client opens the transaction 
sequentially on an unpredictable number of devices. 
Furthermore, it is allowed to add devices to the transaction 
as long as the test request has not been sent. 

To solve this problem, a naive solution would be to 
allocate all the memory potentially needed immediately, by 
computing the maximum size of the transaction, which 
corresponds to the size of all the settings of all the devices 
in the server, plus the size required for the transaction's 
bookkeeping structure. However, many FESA processes 
operate on machines which have a low amount of memory, 
without enough memory left to do this. This means that it 
would be impossible to conduct a transaction on such a 
server, even if it would affect a single device. 

The solution is to take advantage of the MMU of the 
CPU, and the capabilities of the operating system: it is 
possible to reserve a chunk of contiguous memory in a 
process, without actually mapping it to any physical 
memory. This works even with memory shared between 
processes, by using the appropriate flags in the call to 
mmap: with PROT_NONE as protection together with the 
MAP_PRIVATE and MAP_ANONYMOUS flags, the 
memory is marked as inaccessible, causing the operating 
system to not allocate any physical memory, but to still 
reserve the address space in the process, guaranteeing a 
contiguous memory block. When the buffer needs to be 
extended, and some actual physical memory allocated, 
mmap is called again, allowing to allocate an arbitrary 
amount of the reserved memory. This time, we pass 
PROT_READ and PROT_WRITE to make the memory 
readable and writable, together with the flags 
MAP_FIXED and MAP_SHARED, ensuring respectively 
that the address of the reserved memory is not changed, and 
the memory is visible in other processes. 

Tests on multiple Linux platforms have shown that this 
works as expected. On Windows platforms, the same effect 
can be obtained by calling VirtualAlloc with the flag 
MEM_RESERVE, and then MEM_COMMIT. 

CONCLUSION 
The design and implementation of distributed 

transactions in CERN's accelerator control system have 
been described. During the design process and for 
simplicity reasons, a choice was made to not make it 
resilient to hardware errors, but instead to allow the 
detection of errors until as late as possible before the 
commit happens. The reason is that, unlike a database, if a 
hardware error occurs, rolling back to the previous state is 
not necessarily possible, nor desirable. 

Because of this, implementing a strong guarantee on the 
atomicity of transaction commits is not possible. Any 
attempt at doing so would be much more complex than the 
presented implementation and would require 
compromising on other aspects, such as the time needed to 
process a commit. In addition, keeping the distributed 
transaction design relatively simple ensures that it is 
possible to implement on any device. In practice, this 
allows to offer in FESA both a "transparent mode", 
allowing users to enable transactions on their devices 
without having to write a single line of code, and an 
"advanced mode", where users can fully benefit from the 
flexibility of the 2-phase commit. 

Nevertheless, given the nature of the commit and 
rollback events, a logical next step is to implement a 
system of feedback to allow clients to know immediately 
if a commit failed, and why. Since the commit and rollback 
events are broadcast by the timing system, this requires an 
extension of the protocol to allow clients to be notified 
when that happens. 
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