
DISTRIBUTED TRANSACTIONS IN CERN'S ACCELERATOR CONTROL
SYSTEM

F. Hoguin, S. Deghaye, P. Mantion, J. Lauener, R. Gorbonosov, CERN, Geneva, Switzerland

Abstract
Devices in CERN's accelerator complex are controlled

through individual requests, which change settings
atomically on single Devices. Individual Devices are
therefore controlled transactionally. Operators often need
to apply a set of changes which affect multiple devices.
This is achieved by sending requests in parallel, in a
minimum amount of time. However, if a request fails, the
Control system ends up in an undefined state, and
recovering is a time-consuming task. Furthermore, the lack
of synchronisation in the application of new settings may
lead to the degradation of the beam characteristics, because
of settings being partially applied. To address these issues,
a protocol was developed to support distributed
transactions and commit synchronisation in the CERN
Control system, which was then implemented in CERN's
real-time frameworks. We describe what this protocol
intends to solve and its limitations. We also delve into the
real-time framework implementation and how developers
can benefit from the 2-phase commit to leverage hardware
features such as double buffering, and from the commit
synchronisation allowing settings to be changed safely
while the accelerator is operational.

DISTRIBUTED TRANSACTIONS:
INTRODUCTION

In CERN’s accelerator control system, clients address
devices individually with a request made on a property of
a device. To modify a property across multiple devices,
requires as many requests as there are devices. Until all the
requests are made, an accelerator is in an undefined state.
Moreover, if any of the requests fail, additional actions are
required to understand why it failed and how to fix it,
leaving the accelerator in an undefined state for a
potentially large amount of time.

In order to solve this problem, distributed transactions
were designed and implemented in CERN’s accelerator
control system.

GOALS, LIMITATIONS, AND DESIGN OF
DISTRIBUTED TRANSACTIONS

The goal of distributed transactions is to ensure that a set
of modifications occurring on distributed nodes are either
completely recorded, or not at all. A node can be anything,
but the first example that comes to mind is a database. This
behaviour is typically achieved by using a two-phase
commit. The generic workflow is as follows:

• A transaction is opened with the different
participating nodes;

• Modifications are made on the different nodes in
any order and over an unspecified period of time;

• The commit then occurs in two steps:
1. A commit is sent to all the nodes which

perform the required checks and ensure
that locally there are no errors;

2. If no errors are reported by the first commit,
a second one, confirming the wish to
commit is sent. From then onwards, the
modifications are permanently recorded;

3. If, on the other hand, errors are reported
during the first-phase commit, the
transaction is rolled back on all the nodes
and no modifications are recorded.

DISTRIBUTED TRANSACTIONS IN
ACCELERATOR CONTROLS

In the context of CERN’s accelerator controls, the nodes
are the low-level equipment controllers, the so-called
Front-End Computers (FECs). The modifications are
changes of the underlying equipment settings. A nominal
transaction for CERN accelerator controls contains the
following steps:

• The client opens a transaction with a unique
transaction ID on all the devices it plans to modify,
via a synchronous middleware call to a standardised
property;

• The client modifies the settings via a synchronous
middleware call. Again, the order and period of time
are unspecified;

• The client asks the devices to test their new settings
via a synchronous middleware call to a standardised
property (TRASACTION.TEST);

• If all the devices report a successful test, the client
commands the timing system to broadcast a commit
event for the transaction. Upon reception, the FECs
permanently commit the new settings;

• Otherwise, if one or more devices report an error
during the test, the client asks the timing system to
broadcast a roll-back event which will trigger the
discard of the settings set with the corresponding
transaction ID.

In the workflow described above, several
implementation choices are already visible. One key
element is the way to transport the final commit and roll-
back. CERN's timing system, whose purpose is, among
other things, to distribute events to the whole accelerator
complex, is used to trigger a commit or rollback of a
transaction. Even though the transactions are not meant to
synchronise the moments at which the commits are
performed, by using the timing system to transport these
two events, we combine the possibilities offered by a
global commit event with the synchronisation possibilities
of the timing system.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV033

TUPV033C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

468 Device Control and Integrating Diverse Systems

In addition, mainly for test purposes, the client may
trigger a commit or rollback event without using the timing
system. This is done by telling every device in the
transaction to commit or rollback via another middleware
call to the TRANSACTION.COMMIT or
TRANSACTION.ROLLBACK properties. It is
acknowledged that in this case, the commit loses its
atomicity, since the client is limited to regular TCP
connections to do this, without any multicast possibility.

It should be highlighted that, on the low-level equipment
controllers (FECs), a single server typically handles many
devices. Clients do not use this information in any way and
must treat each device regardless of the FEC they are
handled by. However, this has some implications on the
design of the server-side commit process. The
implementation of the transaction protocol in a device
server, where a transaction is processed as a whole entity
(in opposition to device by device), is explained in the
following sections. Why such a design choice was made,
its constraints, and how the technical challenges were
solved are also described.

DISTRIBUTED TRANSACTIONS
IMPLEMENTATION IN FESA

The Front-End Software Architecture (FESA)
framework is used to do real-time programming to control
accelerator hardware in CERN’s control system. It offers
the possibility to react to specific events through an API
giving access to all the concerned devices at once. Many
systems developed with FESA are a composition of
multiple devices, and if settings are changed on multiple
devices within a transaction, this must be seen as one
change of all the settings, rather than multiple changes of
individual devices.

Since clients are not aware of this (they always treat
devices as individual entities), this must be transparently
implemented in FESA. In addition, a FESA device server
can be run either as a single process (see Fig. 1) or as two
separate processes, called server process and real-time
process, which interact through a shared memory and
several message queues (see Fig. 2).

Figure 1: FESA server running as a single process.

Figure 2: FESA server running as two processes.

This has several implications:

• FESA must be able to uniquely identify and pass
the data from a transaction across processes.

• Since the transaction is opened sequentially on all
the devices by the client, FESA cannot know in
advance the size of the settings that will be
modified in the transaction.

• When a transaction is tested by the client, test
requests will happen sequentially on every device.
FESA must test the full transaction on the first
received test request and ignore subsequent test
requests on other devices.

Many failures can happen during a distributed

transaction (hardware error, device server crash, network
issue, timing system issue). A commit event is thus not
guaranteed to be processed by all the devices in the
transaction. Because of this, the processing of the commit
event by the devices should be as small an operation as
possible, e.g., a buffer swap. Devices must use the test
request to prepare for an upcoming commit or rollback.
Consequently, the implementation does not guarantee the
state of the system in case of a failure during the commit.
Furthermore, due to the nature of the timing system, it is
difficult to provide feedback to the client in such a case.
Some solutions exist to mitigate this problem [1], at the
cost of an increased complexity.

Finally, in order to provide a transaction implementation
across as many devices as possible, it was decided that
FESA would offer two modes:

• A transparent mode, with no code modification

required by the users, but without the possibility to
leverage some hardware capabilities such as double
buffering. This is intended for cases where
validation of settings is done entirely in software,
which guarantees that commit events will
successfully apply the new settings unless an
unpredictable hardware error occurs.

• An advanced mode, which requires the user to
implement entry points for test, commit, and
rollback. In this mode, the test event can be used to
prepare the hardware, for example by preparing a

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV033

Device Control and Integrating Diverse Systems

TUPV033

469

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

buffer containing the new settings to apply, and the
commit event can be used to trigger a buffer swap,
applying the new settings atomically in a very short
time.

These two modes are mutually exclusive in a FESA

process.

TRANSACTIONS IMPLEMENTATION IN
FESA: TRANSPARENT MODE

In order to fully understand the implementation of
transparent transactions, it is first necessary to understand
how a normal modification of a setting works (outside of a
transaction):

• The client sends a new setting.
• Its validity is checked by some user code, which

may accept or reject the new value.
• If the new setting is valid, the memory containing

the setting values is updated with the new value [2].
If the setting needs to be applied immediately, an
event is sent to the real-time FESA process, possibly
across process boundaries if running in split mode.

• The event is received and processed by the real-time
part, which applies the new setting on the hardware.

If the setting is instead modified within a transaction, the

sequence is as follows:
• The client sends a new setting.
• Its validity is checked by some user code.
• If the new setting is valid, its value is saved in a

buffer dedicated to this transaction. If the setting
needs to be applied as soon as the transaction is
committed, an event is prepared and saved in the
transaction buffer.

• The client sends other settings, and the same process
is repeated until a commit or rollback event happens
(in transparent mode, the test event is ignored, as the
validity of settings has been checked already).

• If a commit event happens, the memory containing
the setting values is updated with the buffered
setting values. All the buffered events are triggered.

• The events are received and processed by the real-
time part, which applies the new settings on the
hardware.

Thus, in transparent mode, the modification of settings

within a transaction are equivalent to modifying all the
settings in rapid sequence.

While the transparent mode offers the main advantage of
being usable without user code modification, it does not
cover one key element of the nominal sequence which is
the possibility for Sets to be done in an unspecified order.
To support this, a more sophisticated implementation is
required, the advanced mode.

TRANSACTION IMPLEMENTATION IN
FESA: ADVANCED MODE

The goal of advanced mode is to allow the user to benefit
from the 2-phase commit (test, then commit) to test new
settings only after they have all been set, and to leverage
the capacity of the controlled hardware to prepare for a
commit.

A fictitious but simple example (which can be applied to
many other use cases) can demonstrate why this is
important:

Consider a lab-bench power supply, which has a power
output limit of 300 watts. It is connected to a FESA process
which can modify its voltage and maximum current
through a serial connection.

When a new voltage or maximum current is requested
by a client, the user code must check that the product of the
two does not exceed 300 watts. Assume that it is currently
configured to 5V and a maximum of 20A.

If a client wants to set it to 30V and 5A, without the
transactions, it must be careful to first set the maximum
current, otherwise the maximum power will exceed 300W
in the transition (30V times 20A). This requires the client
to know about this logic, which is not feasible in the case
of automated settings management.

The transaction implementation in advanced mode
solves this problem by delaying the validation of the
settings until the test request happens. The user code can
still reject a setting value as soon as it is sent if it is invalid
on its own (e.g., setting a voltage of 10000V), and in
addition, it can check the validity of the settings
combination in the code that is called when a test event
happens. The API provided by FESA in that case
transparently provides the values stored in the transaction
buffer if present, or previously known otherwise.

Now also assume that the power supply can receive its
new voltage and maximum current settings but wait for a
further command to apply them. In addition to ensuring the
settings validity, the implementation of the test event
would then send the new values to the power supply. If
anything goes wrong at this point, it is still possible to
signal a test failure to the client, who can roll back the
transaction, or try with other setting values.

Finally, when the commit event arrives, the only thing
left to do is to tell the power supply to apply the new
settings. The possible failure surface has thereby been
reduced to the strict minimum, allowing the clients to
cancel the transaction if anything else goes wrong.

While this example is voluntarily simple, it applies to a
lot of hardware used in accelerators, such as power
converters, digital oscilloscopes, and much more.

ADVANCED MODE OUTSIDE OF A
TRANSACTION

As explained above, transactions in advanced mode
require the user to adapt their code to handle the test,
commit and rollback events. However, the settings can still
be changed outside of a transaction, in which case they
need to be applied immediately.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV033

TUPV033C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

470 Device Control and Integrating Diverse Systems

For such cases, FESA simulates a transaction: the
request to modify a setting will cause FESA to generate a
test event, and if it is successful, a commit event. If the test
event fails, the new setting value will not be applied, and
the client will receive the test event error message,
informing why the new setting could not be applied.

While this approach may seem complex at first, it has
many advantages: the complexity remains in the FESA
framework, where it is thoroughly tested. The user only has
to write a single implementation of the code which
communicates with the hardware, and as a result only has
to test one code path.

TRANSACTIONS ACROSS PROCESS
BOUNDARIES

The FESA framework may be used in what is called
"split mode". This is meant for highly critical systems,
which should always be up and running. In this mode, the
real-time part of a FESA deployment is launched in a
process, while the server part, responsible for handling
client requests, runs in a separate process. This can be seen
as a way to sandbox the real-time process.

The two processes communicate using standard IPC
methods: shared memory, message queues, shared mutexes
and condition variables. From a user point of view, nothing
changes feature-wise, but there are a few restrictions,
mainly due to the fact that pointers are not valid across
process boundaries.

In order to implement the transactions feature in FESA,
these considerations had to be taken into account. As a
result, the transaction buffer, allocated when a transaction
is opened, is a dynamic structure which cannot contain
pointers. The devices and their settings are given unique
indices, allowing to identify them across the two processes
of a split mode deployment. Every transaction buffer also
contains a mutex and a condition variable, which are used
to signal the completion of the test, commit, and rollback
events.

There is another consequence of running in split mode:
the memory allocated for the transaction buffer must be
contiguous, as it is mapped between the two FESA
processes using the mmap system call, which takes an
address and a size. However, it is not possible to know in
advance how much memory will be needed for the
transaction buffer: the client opens the transaction
sequentially on an unpredictable number of devices.
Furthermore, it is allowed to add devices to the transaction
as long as the test request has not been sent.

To solve this problem, a naive solution would be to
allocate all the memory potentially needed immediately, by
computing the maximum size of the transaction, which
corresponds to the size of all the settings of all the devices
in the server, plus the size required for the transaction's
bookkeeping structure. However, many FESA processes
operate on machines which have a low amount of memory,
without enough memory left to do this. This means that it
would be impossible to conduct a transaction on such a
server, even if it would affect a single device.

The solution is to take advantage of the MMU of the
CPU, and the capabilities of the operating system: it is
possible to reserve a chunk of contiguous memory in a
process, without actually mapping it to any physical
memory. This works even with memory shared between
processes, by using the appropriate flags in the call to
mmap: with PROT_NONE as protection together with the
MAP_PRIVATE and MAP_ANONYMOUS flags, the
memory is marked as inaccessible, causing the operating
system to not allocate any physical memory, but to still
reserve the address space in the process, guaranteeing a
contiguous memory block. When the buffer needs to be
extended, and some actual physical memory allocated,
mmap is called again, allowing to allocate an arbitrary
amount of the reserved memory. This time, we pass
PROT_READ and PROT_WRITE to make the memory
readable and writable, together with the flags
MAP_FIXED and MAP_SHARED, ensuring respectively
that the address of the reserved memory is not changed, and
the memory is visible in other processes.

Tests on multiple Linux platforms have shown that this
works as expected. On Windows platforms, the same effect
can be obtained by calling VirtualAlloc with the flag
MEM_RESERVE, and then MEM_COMMIT.

CONCLUSION
The design and implementation of distributed

transactions in CERN's accelerator control system have
been described. During the design process and for
simplicity reasons, a choice was made to not make it
resilient to hardware errors, but instead to allow the
detection of errors until as late as possible before the
commit happens. The reason is that, unlike a database, if a
hardware error occurs, rolling back to the previous state is
not necessarily possible, nor desirable.

Because of this, implementing a strong guarantee on the
atomicity of transaction commits is not possible. Any
attempt at doing so would be much more complex than the
presented implementation and would require
compromising on other aspects, such as the time needed to
process a commit. In addition, keeping the distributed
transaction design relatively simple ensures that it is
possible to implement on any device. In practice, this
allows to offer in FESA both a "transparent mode",
allowing users to enable transactions on their devices
without having to write a single line of code, and an
"advanced mode", where users can fully benefit from the
flexibility of the 2-phase commit.

Nevertheless, given the nature of the commit and
rollback events, a logical next step is to implement a
system of feedback to allow clients to know immediately
if a commit failed, and why. Since the commit and rollback
events are broadcast by the timing system, this requires an
extension of the protocol to allow clients to be notified
when that happens.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV033

Device Control and Integrating Diverse Systems

TUPV033

471

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

REFERENCES
[1] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi,

J. M. Hellerstein, and I. Stoica, “Highly available
transactions: Virtues and limitations,” in Proc. VLDB’14,
Hangzhou, China, September 2014, pp. 181-192.

[2] F. Hoguin and S. Deghaye, “Solving the Synchronization
Problem in Multi-Core Embedded Real-Time Systems”, in
Proc. ICALEPCS’15, Melbourne, Australia, Oct. 2015,
pp. 942–946,
doi:10.18429/JACoW-ICALEPCS2015-WEPGF102

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV033

TUPV033C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

472 Device Control and Integrating Diverse Systems

