
CONTROL SYSTEM OF A PORTABLE PUMPING STATION FOR
ULTRA-HIGH VACUUM

M.Trevi†, L.Rumiz, E.Mazzucco, D.Vittor, Elettra Sincrotrone Trieste, Trieste, Italy

Abstract
Particle accelerators operate in Ultra High Vacuum

conditions, which have to be restored after a maintenance
activity requiring venting the vacuum chamber. A com-
pact, independent and portable pumping station has been
developed at Elettra to pump the vacuum chamber and to
restore the correct local pressure. The system automatical-
ly achieves a good vacuum level and can detect and man-
age vacuum leaks. It has been designed and manufactured
in-house, including the mechanical, electrical and control
parts. By means of a touch screen an operator can start all
the manual and automatic operations, and monitor the
relevant variables and alarms. The system archives the
operating data and displays trends, alarms and logged
events; these data are downloadable on a removable USB
stick. Controlled devices include two turbomolecular
pumps, one primary pump, vacuum gauges and one resid-
ual gas analyser. The control system has been implement-
ed with a Beckhoff PLC (Programmable Logic Control-
ler) with RS-485 and Profibus interfaces. This paper fo-
cuses in particular on the events management and object-
oriented approach adopted to achieve a good modularity
and scalability of the system.

INTRODUCTION
Sometimes sectors of the accelerator vacuum chamber

need maintenance or updates requiring venting, but when
they have been carried out it is necessary to create ultra-
level vacuum conditions to go back to normal operations.

At Elettra, ultra-level vacuum is usually created locally
using a pumping station with on electromechanical logics
on board (relays, mechanical timers, etc.). The main dis-
advantage is that it is not programmable and in case of
failure it can stop without any information about the rea-
son (for example a mains interruption due to a thunder-
storm). Another disadvantage is that, due to its dimen-
sions, the system is not easily moveable inside the accel-
erator tunnel. These issues led us to design an automatic
and autonomous system managing entire parts of the
system: alarm management, operator interface, archiving
of variables and events like commands, value changed,
etc. An important requirement was the compactness of the
entire system that has been achieved by suitable choices
of mechanical, electrical and automation components.
Moreover another feature that we wanted to reach was the
possibility to record log and trend.

PLC, I/O boards and wirings are contained in a 3-unit
rack (~180 mm height). The controller based on a Beck-
hoff CX5120 PLC is compact with very good heat dissi-
pation. The Beckhoff development environment feature
an IDE and OOP (Object Oriented Programming) capabil-

ities. An Exor panel has been chosen as HMI.
For the development of the software we have taken in-

spiration from a template on the Beckhoff site based on
OOP [1]. We chose to create OOP syntax in order to be
independent on that of the manufacturer. In this way it
should be possible to move the software to other control-
lers. We have assumed that these controllers implement
structured text and that a function block can be divided in
actions.

The OOP paradigm is mainly based on three principles:
• Encapsulation: the internal state of an object can be

modified by a public method.
• Inheritance: a child class can derive and redefine

methods from a super class. The inheritance defines a
hierarchy between classes; the mechanism is static
and defined at compilation time.

• Polymorphism: it is a dynamic mechanism used at
run time. If a class has a method m() and one subclass
(child) redefines m(), the polymorphism allows exe-
cuting an m() version according to which kind of sub-
class object is calling it.

In the PLCs software classes are implemented by Func-
tion Blocks (FB), as defined in the IEC 61131-3 standard
[2]. The instance of a FB is equivalent to the object of a
class. The standard mentions typical keywords of OOP
like methods, extends, implements, etc. We have not used
these elements in order to comply as much as possible
with other kinds of controllers that do not implement
these keywords. Methods are replaced by dividing the FB
code in several independent parts called actions. Extends
are replaced by writing FB I/O interfaces in order to im-
plement the same concepts.

Another important aspect of the design was alarms and
commands management. An alarm can be configured in
order to allow the following actions: auto-reset,
acknowledge and recording. A command can be recorded
by means of the PLC logging system or by the audit trail,
which is a logging mechanism provided by the HMI. In
this log the HMI writes setpoint changes, commands sent
to the PLC and it tracks who did what. This feature is
widely used in industrial systems [3]; adopting it is par-
ticularly easy to save and move log files outside the sys-
tem for data analysis.

All the system configurations can be easily changed
many times during the design and commissioning of the
software using a form which we have designed in C#
VS2015. The result of this form is written in an XML
code to be imported in the file system of the HMI project.

 __

† massimo.trevi@elettra.eu

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV014

TUPV014C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

418 Device Control and Integrating Diverse Systems

BRIEF DESCRIPTION OF PROCESS
When a vacuum chamber is installed in the accelerator

it has to be brought to ultra-high vacuum conditions (~
10-9 mbar). This process is divided into three steps, corre-
sponding to three different vacuum levels and three dif-
ferent kinds of vacuum pumps to be used:

• Primary pump (Primary Pump Motor - PPM): starts
creating flow vacuum;

• Turbomolecular pump (Turbomolecular Pump Motor
- TPM): can create high vacuum, in the range 10-6-
10-8 mbar;

• Ionic pump (SIP): allows reaching the target of ~10-9
mbar.

The system described in this paper uses the first two
kinds of pumps. We have implemented following two
features:

• Leak test: the test to search for leaks in the vacuum
chambers. It is performed by means of a leak detector
connected to the vacuum chamber and using helium
as a tracer gas; the helium gas has a very small mona-
tomic molecule that can easily penetrate even the
smallest holes that the external atmosphere put in
contact with the internal vacuum;

• Residual Gas Analyser (RGA): instrument that anal-
yses the residual gases inside the vacuum chamber
once it has been pumped to a given level. It provides
information on the presence of any vacuum leak or
contaminants, and on the quality of the vacuum
chamber cleaning. Moreover, during some laboratory
or industrial processes, it can identify and follow the
trend of the partial pressures of the gases introduced
into the system (pure gases or mixtures).

The system can be switched in manual and automatic
mode. In manual through to the HMI it is mainly possible
to command valves and pumps and to set the device con-
figurations. The system will normally be used in automat-
ic mode: this means that when an operator pushes the
automatic start button, the PLC automatically sends
commands to valves and pumps in order to reach the
target pressure.

ARCHITECTURE
Figure 1 shows complete architecture of system. Hard-

ware and software details following.

Hardware
The PLC communicates via Profibus with the tur-

bopump controllers (TMP) and via RS485 with the con-
trollers of the vacuum gauges. The HMI screen is inter-
faced via Ethernet and the other devices (primary pump,
valves, buttons and traffic light) are connected via digital
I/Os. In addition, the gauge controllers provide threshold
contacts to warn the PLC of any anomaly on the pressure
with faster response time.

The traffic light has the following components and
meanings:

• Buzzer: activated when at least one alarm has to be
acknowledged;

• Red light: activated when there is at least one alarm;
• Yellow light: activated when there is at least one

warning;
• Green light: if continuous it means that the machine

is in automatic mode, if blinking it means that the cy-
cle has started;

• Blue light - means that the machine is operating in
manual mode.

PLC HMI

Gauge
ctrl 1

Gauge
ctrl 2

Gauge
ctrl 3

TMP1

TMP2

PPM1

VLV1 VLV2 VLV3 VLV4 VLV5 VLV6

Profibus

BTN
1

BTN
2

BTN
3

BTN
4

BTN
5

I/O digit

I/O digit

EthernetRS485 +
I/O digit

I/O digit

I/O digit

Figure 1: Architecture.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV014

Device Control and Integrating Diverse Systems

TUPV014

419

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

PLC Software
The main idea has been to divide each task in a number

of smaller subtasks. This principle is widely adopted for
example for FBs and commands that a device has to exe-
cute.

The pumping system is divided into zones which have a
logical and process meaning. As shown in Figure 2 the
system is divided in 5 zones: A, B, C, D and E. A zone is
defined as the part of the pumping system that can be
sectioned by valves. Only the main PLC program can
interact with the zone I/O interfaces, which can include
other devices interface of FBs like sensors and pumps. In
this way this implementation allows to comply with en-
capsulation.

The main code of this kind of FBs is empty because
they are divided in actions. Every action has a task which
can:

• be executed by an external command; in this case we
call it a method or

• expose FB object states to the program or
• interact between internal actions.
The action that implements a command has three fea-

tures compliant with the method principle:
• call derived FB (class);
• can add code after calling derived class if necessary;
• does not call the derived class in case of rewriting ac-

tion (override).
These features allow the implementation of inheritance

and methods override.

OBJECT MODELING
The UML-Class Diagram has been used to model the

machine devices.

UML (Unified Modelling Language)
UML [4, 5] is a general-purpose, modelling language in

the field of software engineering, which is intended to
provide a standard way to visualize the design of a sys-
tem.

A class diagram is a type of static structure diagram that
describes the structure of a system by showing:

• classes;
• attributes;
• operations (or methods);
• relationships between objects.
In the Figure 3 we can see that the boxes (FB/class) are

connected by different kinds of arrows and lines:
• dashed line with arrow means that there is an associa-

tion like a dependency between classes; the depend-

Figure 3: UML - From MotorCore To Pump. Figure 2: P&Id Process and Instrumentation Diagram.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV014

TUPV014C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

420 Device Control and Integrating Diverse Systems

ent class object might use an object of another class
in the code of an action/method;

• solid line with arrow means that there is a generaliza-
tion between FB/class, so there is an inheritance.

The boxes are divided into three parts: on the top we
have the name of FB/class, in the middle we have the
attributes managed by FB/class, at the bottom we have the
actions/methods.

Devices Modelling Example
In order to respect the OOP paradigm, the design of

machine device FBs starts from a generic FB (superclass)
which is then adapted according to the requirements.

Figure 4 describes the machine model where we can
observe the OOP paradigm application in a logical class.

Figure 3 shows the pumps description and the deriva-
tion from a generic FB (superclass) of two derived clas-
ses: primary and turbomolecular pump FB. They are de-
rived from Motor_FeedBackInterlock, which means that
primary and turbomolecular pumps have interlock fea-
tures to start and stop, but also Motor_FeedBack and
MotorCore features.

We would like to underline that a simple push button
can be modelled by an OOP paradigm. In our case we
have a button with a LED frame and therefore we start
from a button that has the electric input (ButtonCore) and
we derive the ButtonLight that has a feedback too.

Figure 4 shows how the machine has been modelled:
the machine is divided in zones. A zone can be enabled by
a command as well as a device. Every zone has at least
one Pirani sensor and so Zone_Pirani has been derived
from Zone_Core. From this point there are other three
derived FB/classes in order to respect their composition.
As explained in the UML chapter different kinds of lines
and arrows show different relationships between classes.

Note that, for example, Zone_Pirani_TP is derived by
Zone_Pirani but depends on Turbopump class that is
modelled in Figure 3.

We can also see this modelling from a P&Id (Process
and Instrumentation Diagram) schematic as in Figure 2.

In this way we can check matching between a mechanic
based scheme and a UML scheme.

FB I/O INTERFACE
Every FB interface that describes something to be dis-

played on HMI has been designed in order to have the
same interface both for a logical or physical type. In addi-
tion, it was decided to have a minimum common set of
commands and states to be managed in the same way at
HMI level.

 Having the same interface is useful to organize infor-
mation to and from a FB. We have divided them in:

Inputs:
• Physical input, connected to PLC boards;
• General input: Boolean, numbers and strings;
• General input: Boolean, numbers and strings used in

test mode;
Output:
• Physical output, connected to PLC boards;
• Logical status: represents the status of objects de-

scribed by FB;
In/Out:
• Alarm;
• Command: corresponds to executing an ac-

tion/method;
• Data: every kind of number that represents for ex-

ample thresholds, timers, parameters, configuration,
etc.

In/Out variables have been necessary to allow
FB/classes to change variables value both inside and
outside the code. Note that an Input variable has a part
dedicated to TestMode which means that this variable is
used when a simulation is running and the object is in
TestMode. Simulation is very useful before the commis-
sioning to test automatic cycles, behaviour in case of
alarms, etc. Another point to take into consideration in
this kind of interface organization is that in the code you
can manage devices or logical parts in the same way: they
have enable commands, read/write value actions, alarms

Figure 4: UML Machine Model.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV014

Device Control and Integrating Diverse Systems

TUPV014

421

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

and warning statuses.
Regarding the second choice, in order to have a mini-

mum common set of states and commands, let’s consider
for example that we want to reuse the management of an
object visualization and therefore, according to the status
of an object, display the following states common with
different colours:

• Alarm in red;
• Warning in yellow;
• Run in green;
• Testmode in blinking blue;
• Disabled in light grey;
• No link in blinking yellow.-

ALARM AND COMMAND SETTINGS
Another important design choice was how to manage

the setting of alarms and commands. In fact, every alarm
and command is represented by a 16-bit word to define
the configuration. One of the mandatory requirements of
the project was the possibility to log and record alarms
and actions. Also, anomalous events must be recorded, for
example a short black out.

The idea is to have a central logging function in the
PLC that is called each time an event happens; examples
are a button pushed by an operator or a device that chang-
es state to alarm. An alarm can require an acknowledge-
ment by an operator or be reset automatically. Moreover,
an alarm or a command can be logged/recorded. A state
associated to each alarm defines if it is active and if an
acknowledgement is required. For these reasons the 16-bit
word representing an alarm or a command is divided into
two parts: 12 bit for the configuration, 4 bit for the state.
In this way each alarm and command is represented by a
number from 0 to 65535.

While logging is managed by the PLC for example with
a circular buffer, the recording action is more complex. To
do that we have used the audit trail feature of the HMI,
while another feature of the HMI has been employed to
acknowledge alarms. For this purpose, a graphical inter-
face using a form written in C# VS2015 has been devel-
oped. The form analyses the dictionary created by the
HMI. The dictionary is a XML list where tags are de-
scribed by name and address information. There is a table
where it is possible to put the tag name to be found and its
setting number. There are some buttons to create tag and
alarm files in XML format. According to this number the
code configures alarms and tags with the appropriate
XML setting based on the specific IDE language. Figure 5
and Figure 6 show an example of setting values contained
in a Windows form and the effects on the XML code; the
code 52224 is used to configure an alarm to be resettable
and acknowledgeable.

FUTURE IMPROVEMENTS
There are a number of features that have not been im-

plemented yet because this system is a prototype, but will
be taken into account in future implementations.

For example, it would be useful to provide a TCP/IP in-
terface to receive commands and send data via Tango for
remote panels. Furthermore, there would be the possibil-
ity of a VNC connection by a remote host with a server on
the HMI.

Other features that we want to implement are automatic
interlock messages: for example, if we want to open man-
ually a valve that cannot be opened or if the start button is
pressed and the cycle does not start, a message should
appear to show the reason to the operator. In this way it
would be possible to create a troubleshooting system to
help the operator to make the right operation to fix the
problem and start the system faster.

Moreover, we would like to consider converting the
present PLC program in order to use Beckhoff OOP key-
words and eventually evaluate improvements in terms of
complexity and performance in the two solutions.

Finally, it would be useful to design a superclass for
generic serial communications to allow deriving from it
the Profibus and RS485 classes.

REFERENCES
[1] Beckoff,

https://infosys.beckhoff.com/english.php?cont
ent=../content/1033/tc3_plc_intro/2527303819.
html&id=

[2] Wikipedia,
https://en.wikipedia.org/wiki/IEC_61131-3

[3] Food and Drug Administration - CFR 21 - part 11.
[4] Wikipedia,

https://en.wikipedia.org/wiki/Unified_Modelin
g_Language

[5] Available: https://www.visual-paradigm.com

Figure 6: Part of Windows Form.

Figure 5: XML extract.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV014

TUPV014C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

422 Device Control and Integrating Diverse Systems

