
BACKEND EVENT BUILDER SOFTWARE DESIGN
FOR INO mini-ICAL SYSTEM

Mahesh Punna1, Narshima Ayyagiri1, Janhavi Avadhoot Deshpande1, Preetha Nair1 ,
Padmini Sridharan1,Shikha Srivastava1, Satyanarayana Bheesette2, Yuvaraj Elangovan2,

Gobinda Majumder2, Nagaraj Panyam2
1BARC, Mumbai, India
2 TIFR, Mumbai, India

Abstract
The Indian-based Neutrino Observatory collaboration

has proposed to build a 50 KT magnetized Iron Calorimeter
(ICAL) detector to study atmospheric neutrinos. The paper
describes the design of back-end event builder for Mini-
ICAL, which is a first prototype version of ICAL and con-
sists of 20Resistive Plate Chamber (RPC) detectors. The
RPCs push the event and monitoring data using a multi-tier
network technology to the event builder which carries out
event building, event track display, data quality monitoring
and data archival functions. The software has been de-
signed for high performance and scalability[chronous data
acquisition and lockless concurrent data structures. Data
storage mechanisms like ROOT, Berkeley DB, Binary and
Protocol Buffers were studied for performance and suita-
bility. Server data push module designed using publish-
subscribe pattern allowed transport & remote client imple-
mentation technology agnostic. Event Builder has been de-
ployed at mini-ICAL with a throughput of 3MBps. Since
the software modules have been designed for scalability,
they can be easily adapted for the next prototype E-ICAL
with 320 RPCs to have sustained data rate of 200MBps.

INTRODUCTION
The Indian-based Neutrino Observatory (INO) collabo-

ration has proposed to build a 50 KT magnetized Iron Cal-
orimeter (ICAL) detector to study atmospheric neutrinos
and to make precision measurements of the neutrino oscil-
lation parameters. The detector will look for muon neutrino
induced charged current interactions using magnetized iron
as the target mass and around 28,800 Resistive Plate
Chambers (RPCs) as sensitive detector elements [1]. The
mini-Iron Calorimeter (mini-ICAL) detector, a prototype
of the ICAL detector is being set up at the Inter Institutional
Centre for High Energy Physics’ (IICHEP) transit campus
at Madurai. The mini-ICAL detector has 20 glass Resistive
Plate Chamber (RPC), which act as sensors and are stacked
in between 11 iron plates of 4 metre x 4 metre size. The
iron plates are magnetised by passing electricity through
copper coils wound around. This is expected to serve the
purpose of understanding the engineering issues in con-
structing the main ICAL, and at the same time provide im-
portant inputs on the ICAL's operating parameters and
physics measurement capabilities. E-ICAL with 320 RPCs
is planned to be setup in Madurai, India. Max throughput
expected for E-ICAL is around 200MBps with 10% hit rate
and 10k trigger rate.

SYSTEM OVERVIEW
The system consists of several sub-systems: RPC DAQs,

Backend Data Acquisition System (BDAQ), Trigger Sys-
tem, Calibration System (CAU), Magnet System, Gas Sys-
tem, and LV/HV System as shown in Fig. 1. Description of
each system is beyond the scope of the paper [2].

Figure 1: System overview.

Neutrino interacts with the iron plates along its line of
travel, triggering events in several RPCs along its path. Or-
thogonal strip channels (X&Y) on RPCs pick up the
charged particles, which are produced from the interaction
of neutrino with iron plates. RPC-DAQ modules are con-
nected in hybrid network topology to backend system.
Trigger System detects events of interest and notifies RPC-
DAQs to transmit event data event data which consists of
strips hit and timing information over TCP socket to the
designated Data Concentrator (DC) node. Data Concentra-
tor nodes collect event data packets from all the triggered
RPC-DAQs and assigns the timestamp and Event Number
to the data packet. The updated RPC-DAQ data packets
from the data concentrators are pushed to event builder

Backend Data Acquisition System (BDAQ)
The BDAQ system as shown in Fig 2. comprises of sev-

eral subsystems that are intended to acquire event data and
monitor data from the RPC-DAQs. The system also pro-
vides event building, event display, data quality monitoring,
data archival mechanisms and run manager. BDAQ is a
distributed system consisting of several subsystems; Data
Concentrator, Event Builder (EB), Run Manager, Data

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV013

Device Control and Integrating Diverse Systems

TUPV013

413

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Quality Monitoring, Data Visualization, Long term data ar-
chival. The scope of the paper is limited to the development
of Event Builder module.

Figure 2: Backend Data Acquisition system.

EVENT BUILDER
Each muon interaction triggers several RPC events;

Event builder node is responsible for collating the individ-
ual RPC event data packets based on the event number and
storing the built-event collection in the required data for-
mat. The main functional requirements of Event Builder
software include:

• Event data acquisition from Data Concentrator;
• Monitoring of data from RPC DAQs;
• Event Collation from the RPC event data;
• Local data archival in the selected data format;
• Pushing the collated event data to remote consoles;
• Online muon track visualization.

Software Architecture
The software has been developed following layered ar-

chitecture as illustrated in Fig. 3. Communication layer im-
plements Asynchronous TCP/IP module for receiving var-
iable length RPC data from Data Concentrator, Data push
module for forwarding the complete built event to the other
remote nodes. The event building layer consists of Data Se-
rializer that parses the data bytes to create valid message
object which is binned into a concurrent data structure
based on the event number. A high-performance lockless
data structure has been used for event collation.

Figure 3: Software Architecture.

The collated event is published to Server push module
and processing layer. Processing layer handles the storing
the event in the required data format and displaying the
track information. Data storage module implements differ-
ent storage schemes; ROOT, binary, Berkeley DB, Proto-
Buf and XML.

Core Modules of EventBuilder
Data acquisition module Data acquisition provides

high performance, catering to the system data throughput
requirements. The module is optimized to eliminate any
possible memory allocation overheads.

Event building Event building algorithm is crucial part
of the software. Event building module collates the com-
plete event from out of order RPC data. The module design
implements the necessary concurrency control mechanism
to handle multi-threaded data acquisition.

Backend data store The collated event is processed by
back end store, archiving the data locally. Data storage
module write throughput should satisfy required system
throughput, otherwise it would create back pressure in ac-
quisition pipeline.

Server push module Server data push module publishes
the data to the interested subscriber nodes like data quality
monitor consoles and data visualization consoles.

Data Acquisition Module
In general, there are several IO models followed for de-

veloping network application, which are broadly divided
into thread based and event based models.

Threaded Server Creating a thread per connection with
blocking IO calls is the simplest solution for server appli-
cation. This multi-threaded approach provides concurrent
processing of requests. This approach is not scalable due to
limited CPU/Memory resources

Synchronous non-blocking IO consists of a single
threaded event loop waiting for the readiness of the multi-
ple subscribed socket handles, and triggered socket events
will be synchronously dispatched to the corresponding
event handler. It is based on synchronous event demulti-
plexing mechanism. Although this approach can handle
more number of sockets than thread-per-connection, but
still this is not scalable.

Asynchronous IO is based on asynchronous event de-
multiplexing. The operations are initiated asynchronously
by the application and they run to completion within the
I/O subsystem of the OS. Once the asynchronous operation
is initiated, the thread that started the operation becomes
available. The completed events are inserted into comple-
tion event queue and Asynchronous event de-multiplexer
removes the completed events and returns to the caller by
invoking the corresponding completion handler. Concur-
rent Asynchronous Event Demultiplexer can improve the
performance by making use of thread pool for demultiplex
and dispatch completion handlers concurrently [3] [4][5].

The data acquisition module has been developed using
multi-threaded async IO and is a state full TCP server that
keeps track of all the clients connected to it. To reduce
memory allocation/deallocation overhead, the server has a

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV013

TUPV013C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

414 Device Control and Integrating Diverse Systems

pool of SocketAsyncEventArgs, which reuses the same ob-
ject for every receive. Buffer Manager handles allocation
with dynamic resizing keeping a pool data buffers. The
complete message received is propagated to the next mod-
ule in the pipeline through event trigger mechanism. The
module has been implemented using F#. Async workflow
in F# helped to improve code readability avoiding tradi-
tional call back approach. The use of functional features
like Active Patterns and Pattern Matching improved ex-
pressiveness.

Event Building Module
Event building is a multi-producer single consumer

problem, where many RPC message events are being
pushed simultaneously. The main responsibilities of the
module include;

• Out of order individual RPC events need to be collated
to form the complete event.

• Having a provision for accommodating the delayed
events if any.

• Collated events propagation to the event processor
module should be serialized based on the event num-
ber

Figure 4: LMAX Disruptor based ring buffer.

Event building module has been developed following
LMAX disruptor algorithm [6] as shown in Fig. 4. Disruptor
algorithm is based on a bounded ring buffer that allows
multiple producer threads without using locking. Each item
in ring buffer can hold a list of RPC events, so the ring
buffer is a collection of collections. Putting the messages
into the buffer is a 2-phase process. First the producer
needs to claim a slot in the ring buffer. The sequence/slot
number to claim is calculated from the event number,
which gives access to a slot in the buffer and the event data
is inserted into RPC collection based on RPC ID. All the
events with the same event number are collected in the
same event slot. The events occupy corresponding entry
within a RPC collection based on RPCID. Hence, it does
not require locking.

The event slot will be open for event collection until the
buffer has no available slot or a timeout occurs. This gives
provision for accommodating any delayed events. This
event collation process continues for remaining events. A

new event claims an occupied slot by publishing the event
occupying the slot and updating the cursor variable. Cursor
variable tracks the next slot number available for event pro-
cessing. The event processor handler will be notified which
copies the published event data. The algorithm ensures the
collated events are propagated to the event processor in or-
der based on the event number. The size of buffer and
timeout is calculated based on event trigger rate

Backend Datastore Module
The following are the desirable features of backend data

store
• Efficient data access, particularly data write speeds

need to match with the max system throughput, as it
would create back pressure in the system pipeline

• Cater to large sets of data to suit physics runs which
continue for several hours

• Lightweight and embeddable to prevent inter process
communication overhead

• Efficient object to event byte stream encoding to save
disk space

• Columnar data access/vertical storage techniques that
enables retrieving only the selected fields from event
record without loading the complete event object

• Forward and backward message format version com-
patibility as the schema is likely to change over the
time, but the archived old format data should still be
readable

• Provide extensive querying and data analysis features

Data storage schemes The following data storage

schemes were studied and implemented in the software.
• Binary Serialization: Event object is serialized to data

byte stream including meta data describing the class.
This is the simplest solution [7][8].

• XML: XML Serialization converts object public fields
and properties to readable xml stream, which creates a
verbose xml file [9].

• BerkeleyDB: This is a light weight embeddable data
management library. The memory footprint is just
300KB, but can manage the databases up to 256TB in
size. It is a NoSQL database based on key-value pairs.
It runs in the address space of the application, hence
no communication overhead and all the data access
methods are defined through function-call interface [10]

• Google Protocol Buffers(ProtoBuf): It produces faster
and smaller byte stream as schema is defined external
to the data. It is based on base128 varint encoding. It
can support data versioning [11]

• ROOT: CERN developed ROOT framework [12] has
been used for event data archiving in mini-ICAL sys-
tem. It is an Object-Oriented framework for large scale
data handling applications. It provides efficient data
storage and access system designed to support huge
structured data sets. The main reason for choosing
ROOT as a backend is its edge in analysis and visual-
ization features.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV013

Device Control and Integrating Diverse Systems

TUPV013

415

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Server Data Push Module
There are other remote consoles that require the built

events for track visualization and data quality monitoring.
The server proactively pushes the data to the interested
nodes without clients polling for the data. This supports
implementation of remote consoles in a technology agnos-
tic manner; browser based, web applications, desktop ap-
plication or mobile application depending on the usage.
This is met with the following design approach as illus-
trated in Fig. 5.

Figure 5: Server data push module.

The remote consoles get subscribed to the back-end
server publisher module for various types of events and the
server manages the clients into groups based on the sub-
scription type. When the data is ready, the push module will
publish it to all the subscribed nodes.

Instead of developing the transport mechanisms for
HTTP/TCP from scratch, open source server push technol-
ogy SignalR [13] is considered. SignalR creates persistent
connection between client and server and pushes the server
content to clients instantly. It is an abstraction over http and
TCP protocols. It supports the following transport tech-
niques for handling real-time communication; http trans-
ports websockets [14], SSE, Long polling. Out of which,
websockets provide bidirectional persistent communica-
tion. if websockets is not available, SignalR falls back to
next transport method, based on the capabilities of the
server and client

PERFORMANCE
Event builder with all the integrated modules (acquisi-

tion, data serialization, event building, event store mod-
ules) has been tested for performance with various data
storage types. The test setup consists of multiple DC sim-
ulator clients sending data to EB server on 1 Gbps Ethernet
link. It was observed binary data and BerkeleyDB write
throughput was considerably better than ROOT as shown
in Fig. 6. With the designed ROOT TTree structure, the
write speed observed was around 8MBps due to the write
overheads (file meta data). With mini-ICAL, the maximum

throughput requirement is around 3MBps. However, due to
efficient columnar data access and data visualization,
ROOT has been used for data archiving.

Figure 6: Performance.

TESTING & INSTALLATION
The software was functionally tested with Data concen-

trator simulator & Front End Electronics (FE) simulator at
BARC lab with all the modules integrated to verify the
throughput and data validity. The software was installed at
IICHEP, Madurai for mini-ICAL. It has been recording
data since 2017.

CONCLUSION
The modules have been developed with scalability as de-

sign concern. Asynchronous IO based data acquisition
module is scalable with the increasing the number of con-
nections. Disruptor algorithm based event buffer provides
lock-less data structure for event building. The optimized
data structure can be scaled to work for E-ICAL by tuning
the buffer parameters.

Non-blocking multi-threaded networking and event
building module has been tested up-to 90MBps on 1Giga
bit Ethernet network. The required network throughput
(200MBps for E-ICAL) can be achieved by upgrading the
hardware resources (like 10 Giga bit network and SSD
drives). For improving the data write speeds, multi-
threaded file writing, multi-level data writing and high per-
formance NoSQL databases like BerkeleyDB will be ex-
plored.

ACKNOWLEDGEMENTS
Authors would like to thank the colleagues from TIFR,

Mumbai for their suggestions and guidance.

REFERENCES
[1] INO Project Report, vol.1, 2006.

http://www.ino.tifr.res.in/ino/openReports/
INOReport.pdf

[2] Gobinda Majumdar, Suryanaraya Mondal, “Design, con-
struction and performance of magnetised mini-ICAL detec-
tor module”, in Proc. 39th International Conference on
High Energy Physics (ICHEP2018), Seoul, Korea, Jul. 2018,
Paper ICHEP2018_360, doi: 10.22323/1.340.0360

[3] http://www.flounder.com/asynchexplorer.htm
[4] Irfan Pyarali, Tim Harrison, Douglas C. Schmidt, Thomas

D. Jordan, “Proactor; An Object Behavioral Pattern for De-
multiplexingand Dispatching Handlers for Asynchronous
Events”, in Proc. 4th annual Pattern Languages of Pro-
gramming Conference, Allerton Park, Illinois, USA, Sep.
1997.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV013

TUPV013C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

416 Device Control and Integrating Diverse Systems

[5] https://docs.microsoft.com/en-us/windows/
win32/fileio/i-o-completion-ports

[6] Martin Thompson, Dave Farley, Michael Barker, Patricia
Gee, Andrew Stewart, “Disruptor: High performance alter-
native to bounded queues for exchanging data between con-
current threads”, May 2011, http://lmax-exchange.
github.io/disruptor/files/Disruptor-1.0.pdf

[7] https://docs.microsoft.com/en-us/dotnet/
standard/serialization/

[8] https://docs.microsoft.com/en-us/dotnet/
standard/serialization/binary-serialization

[9] https://docs.microsoft.com/en-us/dotnet/standard/
serialization/xml-and-soap-serialization

[10] Michael A. Olson, Keith Bostic, Margo Seltzer, “Berkeley
DB”, Proceedings of the FREENIX Track, 1999 USENIX
Annual Technical Conference, Monterey, California, USA,
June 6–11, 1999.

[11] https://developers.google.com/protocol-buffers

[12] https://root.cern/

[13] https://docs.microsoft.com/en-us/aspnet/core
/signalr/introduction?view=aspnetcore-3.1

[14] V. Pimentel, G. Nickerson, “Communicating and Display-
ing Real-Time Data with WebSocket,” in IEEE Internet
Computing, vol. 16, no. 4, pp. 45-53, July-Aug. 2012, doi:
10.1109/MIC.2012.64

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV013

Device Control and Integrating Diverse Systems

TUPV013

417

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

