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Abstract 
The Indian-based Neutrino Observatory collaboration 

has proposed to build a 50 KT magnetized Iron Calorimeter 
(ICAL) detector to study atmospheric neutrinos. The paper 
describes the design of back-end event builder for Mini-
ICAL, which is a first prototype version of ICAL and con-
sists of 20Resistive Plate Chamber (RPC) detectors. The 
RPCs push the event and monitoring data using a multi-tier 
network technology to the event builder which carries out 
event building, event track display, data quality monitoring 
and data archival functions. The software has been de-
signed for high performance and scalability[chronous data 
acquisition and lockless concurrent data structures. Data 
storage mechanisms like ROOT, Berkeley DB, Binary and 
Protocol Buffers were studied for performance and suita-
bility. Server data push module designed using publish-
subscribe pattern allowed transport & remote client imple-
mentation technology agnostic. Event Builder has been de-
ployed at mini-ICAL with a throughput of 3MBps. Since 
the software modules have been designed for scalability, 
they can be easily adapted for the next prototype E-ICAL 
with 320 RPCs to have sustained data rate of 200MBps.  

INTRODUCTION 
The Indian-based Neutrino Observatory (INO) collabo-

ration has proposed to build a 50 KT magnetized Iron Cal-
orimeter (ICAL) detector to study atmospheric neutrinos 
and to make precision measurements of the neutrino oscil-
lation parameters. The detector will look for muon neutrino 
induced charged current interactions using magnetized iron 
as the target mass and around 28,800 Resistive Plate 
Chambers (RPCs) as sensitive detector elements [1]. The 
mini-Iron Calorimeter (mini-ICAL) detector, a prototype 
of the ICAL detector is being set up at the Inter Institutional 
Centre for High Energy Physics’ (IICHEP) transit campus 
at Madurai. The mini-ICAL detector has 20 glass Resistive 
Plate Chamber (RPC), which act as sensors and are stacked 
in between 11 iron plates of 4 metre x 4 metre size. The 
iron plates are magnetised by passing electricity through 
copper coils wound around. This is expected to serve the 
purpose of understanding the engineering issues in con-
structing the main ICAL, and at the same time provide im-
portant inputs on the ICAL's operating parameters and 
physics measurement capabilities. E-ICAL with 320 RPCs 
is planned to be setup in Madurai, India. Max throughput 
expected for E-ICAL is around 200MBps with 10% hit rate 
and 10k trigger rate. 

SYSTEM OVERVIEW 
The system consists of several sub-systems: RPC DAQs, 

Backend Data Acquisition System (BDAQ), Trigger Sys-
tem, Calibration System (CAU), Magnet System, Gas Sys-
tem, and LV/HV System as shown in Fig. 1. Description of 
each system is beyond the scope of the paper [2].  

Figure 1: System overview. 

Neutrino interacts with the iron plates along its line of 
travel, triggering events in several RPCs along its path. Or-
thogonal strip channels (X&Y) on RPCs pick up the 
charged particles, which are produced from the interaction 
of neutrino with iron plates. RPC-DAQ modules are con-
nected in hybrid network topology to backend system. 
Trigger System detects events of interest and notifies RPC-
DAQs to transmit event data event data which consists of 
strips hit and timing information over TCP socket to the 
designated Data Concentrator (DC) node. Data Concentra-
tor nodes collect event data packets from all the triggered 
RPC-DAQs and assigns the timestamp and Event Number 
to the data packet. The updated RPC-DAQ data packets 
from the data concentrators are pushed to event builder 

Backend Data Acquisition System (BDAQ) 
The BDAQ system as shown in Fig 2. comprises of sev-

eral subsystems that are intended to acquire event data and 
monitor data from the RPC-DAQs. The system also pro-
vides event building, event display, data quality monitoring, 
data archival mechanisms and run manager. BDAQ is a 
distributed system consisting of several subsystems; Data 
Concentrator, Event Builder (EB), Run Manager, Data 
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Quality Monitoring, Data Visualization, Long term data ar-
chival. The scope of the paper is limited to the development 
of Event Builder module. 

 

 
Figure 2: Backend Data Acquisition system. 

EVENT BUILDER 
Each muon interaction triggers several RPC events; 

Event builder node is responsible for collating the individ-
ual RPC event data packets based on the event number and 
storing the built-event collection in the required data for-
mat. The main functional requirements of Event Builder 
software include:  

• Event data acquisition from Data Concentrator;  
• Monitoring of data from RPC DAQs;  
• Event Collation from the RPC event data;  
• Local data archival in the selected data format;  
• Pushing the collated event data to remote consoles;  
• Online muon track visualization. 

Software Architecture 
The software has been developed following layered ar-

chitecture as illustrated in Fig. 3. Communication layer im-
plements Asynchronous TCP/IP module for receiving var-
iable length RPC data from Data Concentrator, Data push 
module for forwarding the complete built event to the other 
remote nodes. The event building layer consists of Data Se-
rializer that parses the data bytes to create valid message 
object which is binned into a concurrent data structure 
based on the event number. A high-performance lockless 
data structure has been used for event collation.  

 
Figure 3: Software Architecture. 

The collated event is published to Server push module 
and processing layer. Processing layer handles the storing 
the event in the required data format and displaying the 
track information. Data storage module implements differ-
ent storage schemes; ROOT, binary, Berkeley DB, Proto-
Buf and XML. 

Core Modules of EventBuilder 
Data acquisition module Data acquisition provides 

high performance, catering to the system data throughput 
requirements. The module is optimized to eliminate any 
possible memory allocation overheads. 

Event building Event building algorithm is crucial part 
of the software. Event building module collates the com-
plete event from out of order RPC data. The module design 
implements the necessary concurrency control mechanism 
to handle multi-threaded data acquisition. 

Backend data store The collated event is processed by 
back end store, archiving the data locally. Data storage 
module write throughput should satisfy required system 
throughput, otherwise it would create back pressure in ac-
quisition pipeline. 

Server push module Server data push module publishes 
the data to the interested subscriber nodes like data quality 
monitor consoles and data visualization consoles. 

Data Acquisition Module 
In general, there are several IO models followed for de-

veloping network application, which are broadly divided 
into thread based and event based models. 

Threaded Server Creating a thread per connection with 
blocking IO calls is the simplest solution for server appli-
cation. This multi-threaded approach provides concurrent 
processing of requests. This approach is not scalable due to 
limited CPU/Memory resources 

Synchronous non-blocking IO consists of a single 
threaded event loop waiting for the readiness of the multi-
ple subscribed socket handles, and triggered socket events 
will be synchronously dispatched to the corresponding 
event handler. It is based on synchronous event demulti-
plexing mechanism. Although this approach can handle 
more number of sockets than thread-per-connection, but 
still this is not scalable. 

Asynchronous IO is based on asynchronous event de-
multiplexing. The operations are initiated asynchronously 
by the application and they run to completion within the 
I/O subsystem of the OS. Once the asynchronous operation 
is initiated, the thread that started the operation becomes 
available. The completed events are inserted into comple-
tion event queue and Asynchronous event de-multiplexer 
removes the completed events and returns to the caller by 
invoking the corresponding completion handler. Concur-
rent Asynchronous Event Demultiplexer can improve the 
performance by making use of thread pool for demultiplex 
and dispatch completion handlers concurrently [3] [4][5]. 

The data acquisition module has been developed using 
multi-threaded async IO and is a state full TCP server that 
keeps track of all the clients connected to it. To reduce 
memory allocation/deallocation overhead, the server has a 
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pool of SocketAsyncEventArgs, which reuses the same ob-
ject for every receive. Buffer Manager handles allocation 
with dynamic resizing keeping a pool data buffers. The 
complete message received is propagated to the next mod-
ule in the pipeline through event trigger mechanism. The 
module has been implemented using F#. Async workflow 
in F# helped to improve code readability avoiding tradi-
tional call back approach. The use of functional features 
like Active Patterns and Pattern Matching improved ex-
pressiveness. 

Event Building Module 
Event building is a multi-producer single consumer 

problem, where many RPC message events are being 
pushed simultaneously. The main responsibilities of the 
module include; 

• Out of order individual RPC events need to be collated 
to form the complete event.  

• Having a provision for accommodating the delayed 
events if any.  

• Collated events propagation to the event processor 
module should be serialized based on the event num-
ber 

 
Figure 4: LMAX Disruptor based ring buffer. 

Event building module has been developed following 
LMAX disruptor algorithm [6] as shown in Fig. 4. Disruptor 
algorithm is based on a bounded ring buffer that allows 
multiple producer threads without using locking. Each item 
in ring buffer can hold a list of RPC events, so the ring 
buffer is a collection of collections. Putting the messages 
into the buffer is a 2-phase process. First the producer 
needs to claim a slot in the ring buffer. The sequence/slot 
number to claim is calculated from the event number, 
which gives access to a slot in the buffer and the event data 
is inserted into RPC collection based on RPC ID. All the 
events with the same event number are collected in the 
same event slot. The events occupy corresponding entry 
within a RPC collection based on RPCID. Hence, it does 
not require locking. 

The event slot will be open for event collection until the 
buffer has no available slot or a timeout occurs. This gives 
provision for accommodating any delayed events. This 
event collation process continues for remaining events. A 

new event claims an occupied slot by publishing the event 
occupying the slot and updating the cursor variable. Cursor 
variable tracks the next slot number available for event pro-
cessing. The event processor handler will be notified which 
copies the published event data. The algorithm ensures the 
collated events are propagated to the event processor in or-
der based on the event number. The size of buffer and 
timeout is calculated based on event trigger rate 

Backend Datastore Module 
The following are the desirable features of backend data 

store  
• Efficient data access, particularly data write speeds 

need to match with the max system throughput, as it 
would create back pressure in the system pipeline 

• Cater to large sets of data to suit physics runs which 
continue for several hours 

• Lightweight and embeddable to prevent inter process 
communication overhead 

• Efficient object to event byte stream encoding to save 
disk space  

• Columnar data access/vertical storage techniques that 
enables retrieving only the selected fields from event 
record without loading the complete event object 

• Forward and backward message format version com-
patibility as the schema is likely to change over the 
time, but the archived old format data should still be 
readable 

• Provide extensive querying and data analysis features 
 
Data storage schemes The following data storage 

schemes were studied and implemented in the software. 
• Binary Serialization: Event object is serialized to data 

byte stream including meta data describing the class. 
This is the simplest solution [7][8]. 

• XML: XML Serialization converts object public fields 
and properties to readable xml stream, which creates a 
verbose xml file [9]. 

• BerkeleyDB: This is a light weight embeddable data 
management library. The memory footprint is just 
300KB, but can manage the databases up to 256TB in 
size. It is a NoSQL database based on key-value pairs. 
It runs in the address space of the application, hence 
no communication overhead and all the data access 
methods are defined through function-call interface [10] 

• Google Protocol Buffers(ProtoBuf): It produces faster 
and smaller byte stream as schema is defined external 
to the data. It is based on base128 varint encoding. It 
can support data versioning [11] 

• ROOT: CERN developed ROOT framework [12] has 
been used for event data archiving in mini-ICAL sys-
tem. It is an Object-Oriented framework for large scale 
data handling applications. It provides efficient data 
storage and access system designed to support huge 
structured data sets. The main reason for choosing 
ROOT as a backend is its edge in analysis and visual-
ization features. 
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Server Data Push Module 
There are other remote consoles that require the built 

events for track visualization and data quality monitoring. 
The server proactively pushes the data to the interested 
nodes without clients polling for the data. This supports 
implementation of remote consoles in a technology agnos-
tic manner; browser based, web applications, desktop ap-
plication or mobile application depending on the usage. 
This is met with the following design approach as illus-
trated in Fig. 5. 

 
Figure 5: Server data push module. 

The remote consoles get subscribed to the back-end 
server publisher module for various types of events and the 
server manages the clients into groups based on the sub-
scription type. When the data is ready, the push module will 
publish it to all the subscribed nodes. 

Instead of developing the transport mechanisms for 
HTTP/TCP from scratch, open source server push technol-
ogy SignalR [13] is considered. SignalR creates persistent 
connection between client and server and pushes the server 
content to clients instantly. It is an abstraction over http and 
TCP protocols. It supports the following transport tech-
niques for handling real-time communication; http trans-
ports websockets [14], SSE, Long polling. Out of which, 
websockets provide bidirectional persistent communica-
tion. if websockets is not available, SignalR falls back to 
next transport method, based on the capabilities of the 
server and client 

PERFORMANCE 
Event builder with all the integrated modules (acquisi-

tion, data serialization, event building, event store mod-
ules) has been tested for performance with various data 
storage types. The test setup consists of multiple DC sim-
ulator clients sending data to EB server on 1 Gbps Ethernet 
link. It was observed binary data and BerkeleyDB write 
throughput was considerably better than ROOT as shown 
in Fig. 6. With the designed ROOT TTree structure, the 
write speed observed was around 8MBps due to the write 
overheads (file meta data). With mini-ICAL, the maximum 

throughput requirement is around 3MBps. However, due to 
efficient columnar data access and data visualization, 
ROOT has been used for data archiving.  

 
Figure 6: Performance. 

TESTING & INSTALLATION 
The software was functionally tested with Data concen-

trator simulator & Front End Electronics (FE) simulator at 
BARC lab with all the modules integrated to verify the 
throughput and data validity. The software was installed at 
IICHEP, Madurai for mini-ICAL. It has been recording 
data since 2017. 

CONCLUSION 
The modules have been developed with scalability as de-

sign concern. Asynchronous IO based data acquisition 
module is scalable with the increasing the number of con-
nections. Disruptor algorithm based event buffer provides 
lock-less data structure for event building. The optimized 
data structure can be scaled to work for E-ICAL by tuning 
the buffer parameters. 

Non-blocking multi-threaded networking and event 
building module has been tested up-to 90MBps on 1Giga 
bit Ethernet network. The required network throughput 
(200MBps for E-ICAL) can be achieved by upgrading the 
hardware resources (like 10 Giga bit network and SSD 
drives). For improving the data write speeds, multi-
threaded file writing, multi-level data writing and high per-
formance NoSQL databases like BerkeleyDB will be ex-
plored. 
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