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Abstract

When integrating devices into a control system, the device
applications usually contain a large fraction of error han-
dling code. Many of these errors are run time errors which
occur when communicating with the hardware, and usually
have similar handling strategies. Therefore we extended
ChimeraTK, a software toolkit for the development of con-
trol applications in various control system frameworks, such
that the repetition of error handling code in each application
can be avoided. ChimeraTK now also features automatic
error reporting, recovery from device errors, and proper de-
vice initialisation after malfunctioning and at application
start.

GOALS AND REQUIREMENTS

If the business logic of a control application is intertwined
with code for device opening and communication error han-
dling, it becomes hard to read. Hence, this should be avoided.
In an ideal case, the application programmer does not have
to write any device handling code, and a framework takes
care of all the necessary actions, reports faults to the control
system and handles the device recovery. For this to work
with many different kinds of devices, a sufficient level of
abstraction is necessary.

* The framework has to provide a common API for all
devices.

* The framework has to guarantee that the user code can
always read and write all its variables, and therefore
needs to separate read/write operations in the user code
from the actual hardware access.

These are the two key places where the framework has
to have an appropriate interface. The second point is a con-
sequence of the fact that the framework is taking care of
connecting to a device, initialising the device, reporting
the connection status to the control system and propagating
information about faulty connections.

THE ChimeraTK FRAMEWORK

ChimeraTK, the Control system and Hardware Interface
with Mapped and Extensible Register-based device Abstrac-
tion Tool Kit, is a framework for writing control applica-
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tions. [1] An overview is shown in Fig. 1. ChimeraTK con-
sists of three main components:

* The DeviceAccess library provides a common inter-
face to different device types by introducing a backend
plugin mechanism.

* The ControlSystemAdapter allows to integrate into var-
ious control system middlewares as a native applica-
tion. [2]

* The ApplicationCore library connects many application
modules, which make up the business logic, with the
devices and the control system.
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Figure 1: Overview of the ChimeraTK framework. All
components connected with solid lines are part of the same
executable.

All these components are part of the same executable.
The C++-code written by the application programmer
consists of application modules for ApplicationCore.
ApplicationCore is interfacing to DeviceAccess and the Con-
trolSystemAdapter internally. The user never directly inter-
acts with these libraries on the C++ level. Which devices
to use and the parameters for the control system integration
are loaded from configuration files at application start.

The DeviceAccess Library

The DeviceAccess library is the interface to various de-
vices. The device usually is a hardware component which
is being integrated into the control system, but it can also
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be another control system application. DeviceAccess comes
with an extensible backend interface. Support for PClex-
press communication and a suite of dummies for unit testing
are built into the base library. Backends for DOOCS [3,4],
OPC UA [5,6] and Modbus [7, 8] are available as runtime-
loadable plugins. A backend for EPICS [9] is currently under
construction. [10] The plugin mechanism allows to easily
add support for further devices and protocols.

An important abstraction step in DeviceAccess is the in-
troduction of so called register accessors. These are objects
representing a device register in the application. It con-
tains a buffer with the data content, and read() and write()
functions to synchronise the buffer and the device. Each
of those registers is identified by a name. For numerically
addressed protocols like PClexpress or Modbus, a register
name mapping is built into the library.

The ApplicationCore Library

The main idea of ApplicationCore is to build the appli-
cation from small, self contained application modules (see
Fig. 2). Each module has a set of input and output vari-
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Figure 2: Applications written with ApplicationCore consist
of self-contained application modules. Each module has its
own thread and interfaces to the rest of the application via
input and output variables. The connections of those vari-
ables to the device modules and the control system module
are automatically generated by ApplicationCore.

ables and its own processing thread. All inputs and outputs
are identified by a name, which associates it with a process
variable that is part of the variable household of the appli-
cation. ApplicationCore automatically connects the inputs
and outputs of all components (application modules, device
modules and the control system module) which access the
same process variable. The code inside a module does not
care where the data is coming from and where it is going to.
Each module is completely self contained.

Under the hood the variables of the different mod-
ules are connected via lock-free queues, which makes
ApplicationCore a multi-threading library with very effi-
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cient, modern inter-thread communication. However, this
is completely transparent to the user as there are no locks
involved.

In ApplicationCore there are two kinds of inputs: Push-
type inputs and poll-type inputs. Read operations of poll-
type inputs return immediately and the variable contains the
latest value. Read operations of push-type inputs block if no
data is written. Once data is available, the reading thread is
woken up. Typically each application module has as least
one push-type input which the module thread is waiting for.
Like this, the modules automatically synchronise with each
other, without the need for locks or sleeps.

The ControlSystemAdapter Library

While the DeviceAccess library is a client interface to the
devices, the ControlSystemAdapter turns the application into
a server which introduces the published process variables to
the control system. It consists of the ControlSystemAdapter
base library and a concrete implementation for a control
system middleware. ApplicationCore is using the interface
of the base library and is completely independent of the
actual adapter implementation. The adapter implementation
is linked as separate library.

For a proper integration into the control system of a fa-
cility, each adapter implementation comes with a mapping
layer which allows to change the names of variables to match
the facility’s naming scheme or create special data types only
available for the particular middleware protocol.

Currently ControlSystemAdapter implementations are
available for DOOCS [11], EPICS 3 [12, 13] and
OPC UA [14].

EXCEPTION HANDLING AND DEVICE
INITTIALISATION

Handling Faults

Once a problem, usually a communication error, has
been detected in DeviceAccess, this is internally reported
to the backend. The backend informs all register accessors
about the fault. From this point on, all read() operations
to poll type accessors and all write() operations will throw
aruntime_error exception when being called. All push-
type accessors will send exactly one runtime_error ex-
ception through the queue (instead of data), and then no
further data is sent until the next value has been received
after device recovery (see discussion in the ApplicationCore
section).

Each device backend implementation is responsible for
re-establishing the connection when its open() function is
called again. Usually this means trying to re-connect via
whatever protocol is used to communicate with the device.
Like this, no special, device-dependent code is needed on
the higher levels.

In ApplicationCore, the exceptions from the accessors
are caught and handled. As the main point of the exception
handling scheme is to keep the user code free from device
handling code, the user code in the application modules must
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(a) The device module “PhaseDetector” has seen a runtime error.

All of its outputs are flagged with data validity faulty (orange).
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(b) All application modules which have at least one input flagged as
faulty automatically switch the data validity of all their outputs
to faulty.

Figure 3: Propagation of the data validity flag in ApplicationCore.

not see these exception. The exception is reported to the
device module, which in the background is trying to recover
by periodically calling open() on the backend. At the same
time the device status reported to the control system changes
to not functional.

Without further actions, the application modules with the
user code would not be aware that the device has a problem
and that data is not updating any more. For instance if there
are poll-type inputs for calibration parameters, which are
read in addition to the push-type main data, the application
module would keep processing data without noticing that
the calibration parameter might be outdated. That’s why a
mechanism has been introduced to automatically propagate
a data validity flag in ApplicationCore.

Whenever an exception is caught in a process variable,
the last good data value is re-sent with the data validity set
to faulty (Fig. 3a). For push-type data this means, that
the receiving module will be triggered exactly once. For
poll-type data, the same value is read over and over again,
but being flagged as faulty.

Application modules are small, self contained code blocks
where all outputs logically depend on all inputs. This allows
for an automatic propagation of the data validity flag: As
soon as one input is flagged as faulty, all outputs of the
module are also flagged as faulty. Like this, the flag is
propagated for all data that is calculated from faulty inputs
(Fig. 3b). Notice that in Fig. 3b the rawData from the “Con-
troller” device is not marked as faulty, although one of the
inputs of the device (controlParameter) is invalid. For
device modules (and also the control system module) there
is no automatic data validity propagation because they are
not small, self contained units where all outputs logically
depend on all inputs.

This mechanism covers the two possible scenarios: Mod-
ules which use the faulty data as their main data, which
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means they read them as push-type input to synchronise
their execution to it, are processing the data exactly once
to propagate the data validity flag. Modules which use the
faulty data as poll inputs keep running, but flag their data as
invalid. A typical use case is the phase parameter in Fig. 3.
The phase is a typically slowly drifting parameter which
is used to calibrate the rawData. It is a safe assumption
that the calibration is still approximately correct, and the
facility can keep running with it, even if there is a short
communication problem with the phase detector. The cal-
culated calibratedData is flagged as faulty to indicate
that there is a problem. If the problem persists, the calibra-
tion will become less and less reliable. The decision whether
operation can continue with faulty inputs obviously is a
case by case decision. Although usually the code in applica-
tion modules does not care about the data validity because it
is propagated automatically, the flag for each input is avail-
able, such that critical decisions that depend on data being
valid can be done.

Device Recovery

When a device can be re-opened successfully, the appli-
cation and the device have to synchronise their states. The
device might have re-booted, in which case many devices
need to be initialised (reset-flags cleared, clocks set, dy-
namic ranges of ADCs and DACs adjusted etc.). For this to
be automated, ApplicationCore provides the possibility to
register a callback function. It is provided by the user code
and executed immediately after the communication to the
device is established. The parameters written in the initiali-
sation phase often are implementation details of the firmware
which should not be connected to the control system module.
In this function the user code has direct access to the device
and all of its registers, without adding process variables to
the variable household of the application (in contrast to the
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input and output variables of application modules, which
are all visible in the control system due to the automatic
connection code).

After the device initialisation function has been called,
all output variables from the application to the device are
written. This assures that the device and the application both
have the same parameters everywhere. The device module
remembers the last written value of each variable, so it can
be restored in the device even if an output is not re-written by
the application. This is especially important for parameters
which are directly connected from the control system module
to the device module. Obviously a user does not want to
re-enter all parameters again in a panel after a device has
come back online.

In a third step, all push-type data is fetched from the device
and written to the application once. This data does not carry
the data validity flag faulty any more, so the flag is cleared
automatically in each module once all of its inputs are back
to data validity OK.

Finally, after the device is initialised and all data to and
from the device has been transferred once, the device status
flag, which is reported to the control system, is set to 0K as
well. The application is back to normal operation.

Application Start

At application start, all devices start as not functional, and
the device recovery procedure is launched. In the section
about automatic fault handling it was described that an ap-
plication module keeps running, even if a poll-type input is
flagged with data validity faulty. This is working under
the assumption that the last good value can be used to con-
tinue operation, even if the value is not being updated any
more. At the first start of the application, when no commu-
nication to the device is established yet, this mechanism is
not working because there is no previous good value.

To solve this issue, the concept of an initial value has
been introduced in ApplicationCore. All application mod-
ules require that this first, valid value has been received by
all inputs before operation is started. This is assured by
ApplicationCore, which only starts the user-written main
loop once all initial values are present. Each application
module starts by performing its calculation with these initial
values, and writing its outputs before doing the first (block-
ing) read on any input. Subsequent modules now also get
their initial values, and the application takes up operation
in the correct order. The control system adapter is getting
the initial values from the persistency layer of the control
system middleware, and is sending them once at application
start.

If a device is not available at application start, this means
that parts of the application will not start running. This does
not pose a problem, it rather is a feature. Only those modules
which cannot calculate valid data anyway are waiting, and
once these data are available, the sequence of propagating
them is automatically started. Even if all the application
modules would be waiting for initial values, this does not
mean that the application is non-responsive. The commu-
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nication on the control system side is always working, and
the status which device is faulty is shown there. There is
nothing more the application can do in this situation, except
for waiting for the device to become available.

The start sequence for opening a device is the same as for
the recovery case: Once the communication is working, the
initialisation callback function is executed, then all process
variables from the application are written to the device, and
finally the initial values are read for all push-type variables
and propagated.

Although it should be avoided, it sometimes is inevitable
to have circular dependencies between application modules,
which would mean that modules are mutually waiting for the
initial value from the other module before they can send their
outputs. This circle needs to be resolved manually. One of
the modules has to send a safe start value on its output before
receiving the initial values. This cannot be done automati-
cally because only a programmer who knows the application
logic can decide where to break the circle and which “safe”
initial value to send. As unintended circular dependencies
prevent a proper application start and are difficult to debug,
ApplicationCore comes with a built-in circular dependency
detection. If an application module does not receive an ini-
tial value until a timeout, it will print which variables are
affected to simplify the debugging process.

CONCLUSION

The ChimeraTK framework for the development of con-
trol system applications features the ApplicationCore library
for the development of modular applications, which inter-
acts seamlessly with the DeviceAccess library for hardware
access and the ControlSystemAdapter for the integration
into different control system environments. ChimeraTK has
lately been extended with automatic device initialisation and
exception handling. Special emphasis has been put in a clean
initialisation and recovery procedure.

ApplicationCore based device applications are used to
operate the low level radio frequency systems at several
accelerators using different control system software (Eu-
ropanXFEL [15] and FLASH [16] at DESY, Hamburg,
using DOOCS; ELBE [17] at HZDR, Dresden, using
OPC UA [18]; TARLA [19] in Ankara using EPICS3 and
several others). The improved device handling and auto-
matic re-initialisation has reduced the time and manual steps
which are required bring the system back online after a major
fault or maintenance period. This results in reduced down-
times and a higher availability and reliability of the whole
facility.

The ChimeraTK suite is open source software which is
published under the GNU General Public License or the
GNU Lesser General Public License (depending on the soft-
ware component). It is available under [20].

REFERENCES

[1] M. Killenberg et. al., “Abstracted Hardware and Middleware
Access in Control Applications”, in Proc. ICALEPCS2017,

TUPVO012
411

Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©

=



18th Int. Conf. on Acc. and Large Exp. Physics Control Systems

(2]

=
=t

(10]

(1]

[12]

Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

ISBN: 978-3-95450-221-9

ISSN: 2226-0358

Barcelona, Spain, 2017, paper TUPHA178. doi:10.18429/
JACoW-ICALEPCS2017-TUPHA178

M. Killenberg et al., “Integrating control applications into
different control systems”, in Proc. ICALEPCS2015, Mel-
bourne, Australia, 2015, paper TUD3005. doi:160.18429/
JACoW-ICALEPCS2015-TUD3005

The Distributed Object Oriented Control System (DOOCS),
http://doocs.desy.de/.

DeviceAccess-DoocsBackend: DOOCS client for the
ChimeraTK DeviceAccess library, https://github.com/
ChimeraTK/DeviceAccess-DoocsBackend

OPC Unified Architecture Specifications - Part 1: Overview
and Concepts,
org/v104/Core/docs/Partl/.

DeviceAccess-OpcUaBackend: The OPC UA backend for De-
viceAccess, https://github.com/ChimeraTK/OPC_UA_
backend

The Modbus Organisation, https://modbus.org/.
DeviceAccess-ModbusBackend: Client supporting tcp and

rtu communication with modbus devices, https://github.

com/ChimeraTK/DeviceAccess-ModbusBackend

Experimental Physics and Industrial Control System (EPICS),
http://www.aps.anl.gov/epics/index.php

DeviceAccess-EPICS-Backend: EPICS client backend
for DeviceAccess, https://github.com/ChimeraTK/
DeviceAccess-EpicsBackend

ControlSystemAdapter-DoocsAdapter: The DOOCS
implementation for the ControlSystemAdapter,
https://github.com/ChimeraTK/

ControlSystemAdapter-DoocsAdapter

ChimeraTK-ControlSystemAdapter-EPICS: Device support
for integrating ChimeraTK-based devices into EPICS-

TUPVO012

[0)

e 412

https://reference.opcfoundation.

ICALEPCS2021, Shanghai, China

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-TUPVO12

based control-systems, https://github.com/aquenos/
ChimeraTK-ControlSystemAdapter-EPICS

ControlSystemAdapter-EPICS-IOC-Adapter: Implementa-
tion for the ControlSystemAdapter to create an EPICS I0C,
https://github.com/ChimeraTK/
ControlSystemAdapter-EPICS-I0C-Adapter

ControlSystemAdapter-OPC-UA-Adapter: The OPC UA
implementation for the ControlSystemAdapter,
https://github.com/ChimeraTK/
ControlSystemAdapter-OPC-UA-Adapter

M. Altarelli et al., “XFEL: The European X-Ray Free-
Electron Laser”, DESY, Hamburg, Rep. DESY-2006-097,
2007. doi:10.3204/DESY_06-097

C. Schmidt ef al., “Real time control of RF fields using a
MicroT'CA.4 based LLRF system at FLASH”, in /9th IEEE
Real-Time Conference, Nara, Japan, 2014. doi:10.1109/
RTC.2014.7097430

F. Gabriel et. al., “The Rossendorf radiation source ELBE
and its FEL projects”, Nucl. Instr. Meth. B, vol. 1143, pp. 161-
163, 2000. doi:10.1016/S0168-583X(99)00909-X

R. Steinbriick er. al., “Control System Integration of
a UWTCA.4 based digital LLRF using the ChimeraTK
OPC UA Adapter”, in Proc. ICALEPCS2017,
Barcelona, Spain, 2017, paper THPHA166. doi:
10.18429/JACoW-ICALEPCS2017-THPHA166

A. Aksoy et al., “TARLA: The First Facility of Tukrish
Acceleretor Center (TAC)”, in Proc. IPAC2017, Copen-
hagen, Denmark, 2017, paper WEPABO087. doi:10.18429/
JACOW-IPAC2019-THPRB115

ChimeraTK: Control system and Hardware Interface with
Mapped and Extensible Register-based device Abstraction
Tool Kit, https://github.com/ChimeraTK/.

Device Control and Integrating Diverse Systems



