
NOMINAL DEVICE SUPPORT (NDSv3) AS A SOFTWARE FRAMEWORK

FOR MEASUREMENT SYSTEMS IN DIAGNOSTICS*

R. Lange†, ITER Organization, St. Paul lez Durance, France
M. Astrain, V. Costa, D. Rivilla, M. Ruiz, Grupo de Investigación en Instrumentación y Acústica

Aplicada, Universidad Politécnica de Madrid, Madrid, Spain
J. Moreno, D. Sanz, GMV Aerospace and Defence, Tres Cantos, Spain

Abstract

Software integration of diverse data acquisition and timing
hardware devices in diagnostics applications is very
challenging. While the implementation should manage
multiple hardware devices from different manufacturers
providing different applications program interfaces (APIs),
scientists would rather focus on the high-level configuration,
using their specific environments such as Experimental
Physics and Industrial Control System (EPICS),
Tango, the ITER Real-Time Framework or the MARTe2
middleware.

The Nominal Device Support (NDSv3) C++ framework,
conceived by Cosylab and under development at ITER for
use in its diagnostic applications, uses a layered approach,
abstracting specific hardware device APIs as well as the
interface to control systems and real-time applications.

ITER CODAC and its partners have developed NDS
device drivers using both PCI express extension for
instrumentation (PXIe) and Micro Telecommunications
Computing Architecture (MTCA) platforms for multifunc-
tion data acquisition (DAQ) devices, timing cards and
field-programmable gate array (FPGA) based solutions. In
addition, the concept of an NDS-System encapsulates
a complex structure of multiple NDS device drivers,
combining functions of the different low-level devices and
collecting all system-specific logic, separating it from
generic device driver code.

INTRODUCTION
The Instrumentation and Control Systems (I&C) used in

big science facilities (BSF) are based on the use of multi-
tier software applications. For example, advanced DAQ
and timing systems include complex hardware elements
that need software elements to configure all their function-
alities. In the last years, the use of field-programmable gate
arrays (FPGAs), System on a Chip circuits (SoC) and new
development tools have demonstrated that software is a
key part of implementing these systems [1]. The key points
of using software in advanced I&C systems are adaptabil-
ity, reusability and maintainability over the entire BSF pro-
ject lifetime.

The Nominal Device Support (NDS) software frame-
work has been implemented to meet these three goals. Ini-
tially developed by Cosylab [2], it was recently improved
and extended by the ITER Organization, working with
Universidad Politécnica de Madrid and GMV Aerospace
and Defence. NDS is a driver development software frame-
work for diagnostics measurement systems [3], focusing
on data acquisition and timing devices. NDS device drivers
are instantiated and configured to build complex systems,
designed to solve specific applications. The applied meth-
odology simplifies code reusability and testability, achiev-
ing high levels of software quality. Doxygen documenta-
tion, automated tests and static code analysis are used in all
NDS modules. Specifically, the NDS framework provides
a simplified solution for device driver development in I&C
systems that use the Experimental Physics and Industrial
Control System (EPICS) [4-6].

NDS SOFTWARE LAYERS
Figure 1 shows the basic structure of a device driver in

the NDSv3 framework. The application, called “control
system”, uses the generic NDS control system interface to
communicate with NDS device drivers and extensions. The
NDS device drivers use the base and helper classes from
the NDS-core library to access the hardware through the
operating system’s low level drivers.

Control

System

NDS Device

Driver

HW Device

API + kernel

Module

NDS-core

library

Interface

NDS-Control

System

Extension

PV

root node

Firmware node

Trigger node

STM

PV

STM

More nodes ...

Figure 1: NDSv3 framework elements and basic layers.

NDS-Core
The NDS-core layer (NDS-core library) provides a col-

lection of C++ classes and helpers that standardise and sim-
plify the implementation of the software device driver
(NDS device driver) for a specific hardware device or com-
munication interface.

* This work was supported in part by the Spanish Ministry of Science,
Innovation, and Universities Projects under Grant ENE2015-64914-C3-3-

R and Grant PID2019-108377RB-C33, in part by the Spanish Ministry of

Science, Innovation, and Universities Mobility under Grant PRX19/00449,

and in part by the Comunidad de Madrid under Grant PEJD-2018-PRE/

TIC-8571 and Grant PEJ-2019-AI/TIC-14507.

† ralph.lange@iter.org

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBR01

Device Control and Integrating Diverse Systems

TUBR01

337

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

A device driver implemented with NDS-core can be used
by different kinds of applications called “control systems”.
Examples for such applications are EPICS and the Real-
Time Framework developed by ITER [7].

The basic objects of an NDS driver are nodes and pro-
cess variables (PVs). As with previous versions of NDS
(see NDSv2 [2]), every variable has a unique name. The
structure of this name represents the variable’s place in the
facility, system, or subsystem. In NDSv3 this concept is
maintained, but through abstraction much of the complex-
ity is hidden from the end user. NDS PVs are named data
or structures of data relevant to the experiment. To organise
them, they are appended to a named node. Subsequently,
nodes can be appended to other nodes, creating a tree-like
structure that represents the device.

For example, a device might have Analog Input and An-
alog Output functionalities; these would be appended to a
root node or port node to generate the following names:
device(node)-ai(node)-ch0(node)-data(PV); device(node)-
ao(node)-ch0(node)-data(PV).

Note that two different hardware devices manufactured
by different companies implementing the same or similar
functionalities can have an NDS device driver with a big
part of the code in common. The most crucial point is that
they have the same NDS PVs: if these match in name and
functionality; software management and device inter-
changeability are simplified. This is one of the key con-
cepts in the design of NDS based systems at ITER.

NDS-core provides several node and PV type classes to
cover most functionality required in a device:
 Base: The base node is just a name holder.

 Port: A special node that connects with the NDS con-

trol system interface layer (see below). The names of

PVs are generated from the ports they are appended to.

 State Machine: A node with a particular set of func-

tions implementing finite state machine behaviour.

The state machine node has a generic set of PVs that

control the transitions or propagate states to other state

machines below to form hierarchical state machines.

The NDS-core library allows the creation of different
NDS PV types. NDS PVs can store a variable or trigger a
specific function call, named delegate. The read/write op-
eration of an NDS PV allows to read/write the data or trig-
ger the delegate function. The assigned direction, i.e., the
definition as an “input” or “output”, is determined from the
control system’s point of view. The NDS PV types (clas-
ses) are:
 Variable In: This PV contains a value obtained from

the hardware device to be sent to the control system.
There are two different methods to deliver the data:
The control system executes a read operation, access-
ing the scalar or array value, or the device driver exe-
cutes a push operation, creating an interruption to the
control system.

 Delegate In: This PV does not have an attribute, but
calls a method when executing a read operation (de-
fined in NDS as a delegate method). Typically, this

method operates on the hardware through the specific
system device driver to read a value. Variable Out and Delegate Out: These PVs contain
values received from the control system to be used by
the device driver or support the trigger of a function
that performs a write operation into the system device
driver.

The NDS drivers built in this way are able to communi-
cate using the NDS control system interface layer. This
layer has to be implemented once for each control system
that needs to use NDS and can be used with all NDS de-
vices drivers.

To control the instantiation of a device and ensure
uniqueness of PV naming, the NDS-core layer manages the
creation and destruction of device driver instances using a
factory (following a singleton pattern implementation).
Through the factory, it is possible to get the information
about registered drivers and instances. In addition, it gives
access to the driver's nodes (hierarchical), the NDS PVs
and the state machines.

An important functionality of the NDS-core is the sub-
scription and replication of PVs. When two NDS PVs are
connected with a subscription (only possible from an NDS
PV In to an NDS PV Out), pushing a value in the NDS PV
In generates an update in the NDS PV Out. Similarly, two
NDS PV In can be connected by a replication, where push-
ing a value in one NDS PV In replicates its value to the
other. Note that both mechanisms, subscription and repli-
cation, are unidirectional. They allow sharing of infor-
mation between drivers and nodes without the intervention
of the control system, which is crucial for nodes related to
archiving and real-time communication.

The NDS-core software module consists of: The source code implemented in C++ 11.

 Test code implemented with the help of Google-

Test [8]. This test code includes a basic implementa-
tion of an NDS “control system” (see below) for test
and debugging purposes.

 Doxygen [9] support files.
The NDS-core layer does not depend on other software

modules (particularly from the EPICS project) and uses the
C++ Standard Library. NDS-core can be built on Linux and
Windows operating systems.

Control System Interface
The control system interface of the NDSv3 framework

implements the interface to communicate with the application
that runs the NDS device. Currently, the NDSv3
framework contains two interfaces: one exclusively
for running tests of the implemented device drivers (the
test control system mentioned) and one to interface
with the EPICS control system. The NDS-EPICS control
system interface module connects EPICS process database
records to NDS PVs. NDS-EPICS is based on the use of the
asynDriver module [10, 11], which implements the EPICS
Device Support for different records using standardised
interfaces. Using NDS-EPICS, the user only needs to define
the record templates and the substitutions files. (Examples

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBR01

TUBR01C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

338 Device Control and Integrating Diverse Systems

contained in the software unit.) Creating the interface to a
hardware device in EPICS is straightforward if the NDS
device driver provides such EPICS templates.

A third implementation of the control system interface,
for the TANGO control system toolkit [12], exists in the
original NDSv3 development by Cosylab, but has not been
used or tested in the context of the ITER developments.

The NDS-EPICS software module consists of: The source code of the NDS-EPICS interface. An application generating an EPICS Input Output

Controller (IOC). Test code, implemented using Python with the help of

the pyEpics library. These tests verify all implemented

asynDriver interfaces. Doxygen [9] support files.

DEVICE DRIVERS
The NDS device drivers are plugin libraries. Changing

or adding a device drivers does not require to change or
recompile the core modules of NDS.

Adding a Device Driver
The development of an NDS device driver using the

NDS-core library requires the following steps:

 Analysis of the functional blocks available in the hard-

ware device. This often means a mapping of the Ap-

plication Program Interface (API) functions provided

by the manufacturer in charge of managing the differ-

ent hardware parts.

 Definition of the hierarchical driver organisation using

a tree-like structure of nodes. These nodes can be new

classes created by the user or complex nodes from the

NDS-core library, e.g., DAQ, Waveform Generation

(WFG), Digital Input Output (DIO), Trigger and

Clock, Routing, Timestamp or Future Time Event.

 Definition of the operations to be executed in the state

machine transitions available in each node. NDS-core

defines the states UNKNOWN, INITIALIZING, OFF,

ON, RUNNING and FAULT.

 Implementation of the driver constructor. This code in-

cludes the initialisation of the resources needed and the

creation of the driver hierarchy. In addition, creating

the nodes (defined by the user or from the NDS-core

library) requires implementing the methods associated

with the state machine transitions and the getters/set-

ters of the NDS PVs of type delegate in and out.

 Completion of the methods that call the API of the low

level driver for the specific hardware.

 Implementation of the test code, using the test control

system and the GoogleTest library.

 Source code documentation using Doxygen.

 Generation of the packages for driver distribution.

The steps to add the interface with EPICS using the
NDS-EPICS module are: Creation of a software unit including an EPICS appli-

cation and an EPICS IOC. This application needs to be

compiled/linked against the NDSv3 libraries (nds-

core, nds-epics) and the asynDriver module. Development of the specific EPICS database tem-

plates using the examples included in the NDS-EPICS

module. Creation of the EPICS substitutions files. Configuration of the IOC using the st.cmd file, instan-

tiating the driver and loading the databases. Verification of the IOC through an Operator Interface

(OPI) or Channel Access operations. The NDS-EPICS layer offers the possibility to easily

extend the driver implementation with functionalities

specific to the EPICS Control System (e.g. execution

of init or exit hooks)..

Existing Device Drivers
Table 1 shows a set of device drivers for the PXIe and

MTCA platforms that have been developed at different fa-
cilities. Functionally, they can be split into four different
groups: Timing cards (using the PTP standard IEE1588) Multi-function DAQ cards High sampling rate DAQ cards FPGA-based DAQ cards (including a customisable

platform).

Of the two solutions in the last group, one is using the
FlexRIO device from National Instruments (NI) that can be
configured using LabVIEW/FPGA, and the other is based
on a device from Advanced Industrial Electronic Systems
(AIES), using Hardware Description Language (HDL)
with XILINX Vivado.

Table 1: NDS Device Drivers

Devices PXIe MTCA
Timing
IEEE1588

NI PXI6683H PTM1588

DAQ NI X-Series
NI PXIe636x

Teledyn ADQ14
MFMC-FMC168
STRUCK SIS300

DAQ-
FPGA

FlexRIO (LV
FPGA)

MFMC

All device drivers packages contain the driver source
code (see Figure 2), Doxygen-based generated documenta-
tion, test code developed with GoogleTest, a fully config-
ured EPICS IOC application and Python code testing the
EPICS IOC and OPI panels to use the driver using Control
System Studio [13].

EPICS

NDS Device

Driver

HW Device

API + kernel Module

(Provided by the

manufacturer)

Doxygen

documentationNDS-EPICS

Templates

substitutions

OPI- CSS

Figure 2: Elements in an NDS Driver software package.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBR01

Device Control and Integrating Diverse Systems

TUBR01

339

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Normally, such NDS device driver modules do not con-
tain information about any specific use or application.
They are generic drivers, meant to be integrated into bigger
systems that implement specific use cases and include the
specific knowledge. This is achieved by combining differ-
ent driver modules using the extensions introduced in the
next section.

EXTENSIONS

Expanding the basic NDS concepts, the ITER Organiza-
tion and its partners have contributed to the NDS open-
source project by improving the existing and providing ad-
ditional extensions.

NDS Complex Nodes

The main functionalities required to create diagnostics
and control instruments were identified and converted into
pre-defined functional NDS nodes, called NDS complex
nodes. With the intention to homogenise the driver devel-
opment, the NDS-core library contains nodes supporting
common functionalities: DAQ, WFG, DIO, Timing, Trig-
gering, Clock and Routing. In these nodes, the PVs already
have defined names, identifying their specific functional-
ity. Therefore, an NDS device driver is in charge of imple-
menting the configuration, status management and data ac-
quisition with the help of software tiers provided by the
manufacturer (kernel module and user space API) and the
NDS-core library. Additionally, the complex nodes provide
an API to simplify calls to update PV values and
timestamps. Thus, while the set of PVs provided by the
complex nodes is fixed, the final driver implementation can
add and manage more PVs for additional functionality.

NDS Plugins

The implementation of a specific application requires the
use of multiple device drivers as well as other communica-
tion interfaces. In the case of the ITER experiment, there
are two such interfaces: the synchronous data bus network
(SDN) is oriented to data interchange using a network with
a controlled latency and the data archiving network (DAN)
is used to stream high throughput data to the archiving en-
gines.

Figure 3 shows the basic architecture for the NDS inter-
faces to both DAN and SDN.

NDS-SDN

ITER SDN API

kernel Module

(ethernet)

NDS-Driver-1NDS-DAN

ITER DAN API

kernel Module

(ethernet)

SDN NetworkDAN Network

NDS-Driver-n

NDS-Driver-2

Figure 3: Plugins in an NDS-based application. The blue

arrows show the NDS subscriptions.

In order to simplify the use of both interfaces for the de-
veloper, the NDS framework defines the concept of an
NDS plugin. An NDS plugin is an NDS device driver that
requires configuration by the user with the specific param-
eters of the user's application. This configuration is done
through a file that contains all the configuration details in
extended mark-up language (XML).

For the SDN plugin, the XML file contains the identifi-
cation of the SDN topic with its data organisation as well
as the mechanism of when to publish the topic. The topic
can contain scalar or array fields (of different data types)
and structures of these. Each field in the topic is connected
to an NDS PV (using the subscription method). The topic
is published either when a field changes or periodically
with a publishing period defined in the XML file.

For the DAN plugin, the XML configuration similarly
contains the details of the NDS PVs (from device drivers)
that provide the values (scalar or arrays) that need to be
archived.

Besides these two plugins, there is an additional one that
implements the access to the EPICS pvAccess protocol.
This solution provides a method for NDS based drivers to
access industrial or legacy equipment that is interfaced us-
ing EPICS IOCs with standard drivers or other applications
like middle layer services that provide a pvAccess inter-
face. All EPICS PVs published by these IOCs or software
applications can be accessed by NDS applications for read-
ing, writing, and monitoring. This plugin is named NDS-
PVXS because it uses the library developed by the PVXS
Project [14].

NDS Systems

Developing a diagnostic or an instrument in a big science
facility requires integrating multiple hardware devices us-
ing different software device drivers. The application de-
veloper needs to orchestrate all these hardware elements to
implement a correct sequence of operations, i.e., trigger
configuration, data acquisition, time stamping, archiving,
etc.

In the NDS framework, we have defined the concept of
an NDS system, which is a special NDS device driver that
manages hierarchically other NDS device drivers (that
have already been implemented and tested). This is a key
concept, because the developer does not need to program
or change anything in the existing NDS device drivers but
only configures them for their application. Using this ap-
proach, the developer is merely a user of the NDS device
drivers and NDS plugins, responsible for configuring and
coordinating their use. This noticeably reduces the devel-
opment time and simplifies the integration of the final so-
lution.

An NDS system is implemented for a specific use case
solving the specific requirements. It is not a generic appli-
cation, and it can be designed to only expose the specific
NDS PVs needed, reducing the number of PVs that need to
be managed by the control system.

Figure 4 shows the block diagram of an NDS system. A
set of C++ classes for the different device drivers imple-
ment the subscriptions and replications of NDS PVs to

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBR01

TUBR01C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

340 Device Control and Integrating Diverse Systems

manage an NDS device driver from the NDS system level.
The shown structure is the diagram of the system that has
been developed as a working example for the NDS system
extension.

NDS-SYSTEM

NDS-NIDAQX

NDS-NISYNC

NDS-SDN

NDS-PVXS

NDS-EPICSEPICS

NDS-DAN

Figure 4: NDS device drivers and NDS plugins in an NDS

system.

ADVANCED FPGA-BASED SYSTEMS

The use of advanced FPGA-based DAQ devices, which
implement functionalities that can be customised, requires
software tools that simplify development and integration.
For such applications, the existing NDS framework pro-
vides two different solutions.

The first one is based on National Instruments FlexRIO
technology, which includes an FPGA that can be config-
ured using the LabVIEW/FPGA tool. In addition, the IRIO
Project [15] provides a library that simplifies the integra-
tion of these devices. On top of that library, NDS imple-
ments an NDS device driver named NDS-IRIO. To imple-
ment a custom algorithm in the FPGA using this set of
tools, the developer would follow the IRIO design method-
ology, which automatically connects the FPGA code to the
application and generates PVs with the names of the Lab-
VIEW variables, requiring no modifications of the driver
code for different use cases.

The second approach is based on the use of the new
FPGA, SoC and Adaptive Compute Acceleration Platform
(ACAP) with design methodologies that use High Level
Synthesis and the OpenCL standard. The NDS-IRIO-
OpenCL module implements a software layer that simpli-
fies the integration of such systems [16].

SOFTWARE QUALITY

The software modules implemented in the NDS frame-
work have been developed using the Software Quality
model implemented at ITER CODAC. The model is based
on the ISO/IEC 15288 standard and there are documents
for the different elements: the Software Requirements
Specification (SRS), the Software Architecture and Design
Description (SADD), the Software Test Plan (STP), the
Software Test Report (STR) and the Software User Manual
(SUM).

The most meaningful data are the results of the static
code analysis and the test coverage of the different mod-
ules, obtained with the lcov software utility and a So-
narQube [17] installation. The average test coverage value
across the different modules is around 70% and has been
increased with every new release. Static analysis shows no

issues; the cumulated number of reported code smell prob-
lems is less than 1%.

CONCLUSIONS

The NDSv3 framework provides a complete set of soft-
ware modules and documentation to develop complex di-
agnostics solutions involving timing, data acquisition and
other advanced communication interfaces. The NDS im-
plementation model is based on the use of specific device
drivers and configurable plugins. The driver developer and
the diagnostician can work separately, increasing effi-
ciency and reliability by separating the software layers that
contain device specific and application specific
knowledge.

The ITER NDS complex nodes standardise most of the
PV names, easing the usage of different hardware devices,
which should share most PVs. As an added benefit, porting
the device driver from one manufacturer API to another
should re-use more than 80% of the code.

The new generation of NDS drivers makes use of the dif-
ferent plugins interchangeably and is able to connect to
multiple control systems and other software applications.
The extensively tested drivers are reaching a very respect-
able percentage of verification following ITER guidelines,
paving the way to a successful deployment in the facility.

PROJECT CONTRIBUTORS

NDSv3 was conceived and originally implemented by
Cosylab.

The institutions involved in the recent developments are
the ITER Organization, Universidad Politécnica de Madrid
(grupo de Investigación en Instrumentación y Acústica
Aplicada), GMV Aerospace and Defence, the European
Spallation Source and UKAEA-JET/MAST.

The NDS source code for the initial version of NDSv3 is
available at GitHub [18, 19]. The extensions implemented
by ITER, the device drivers, the plugins and other contri-
butions are available at the ITER Git server [20].

REFERENCES

[1] M. Astrain et al., “Real-Time Implementation of the Neu-
tron/Gamma Discrimination in an FPGA-Based DAQ
MTCA Platform Using a Convolutional Neural Network”,
IEEE Transactions on Nuclear Science, vol. 68, no. 8,
pp. 2173-2178, Aug. 2021.
doi:10.1109/TNS.2021.3090670

[2] V. Isaev, N. Claesson, M. Plesko, and K. Žagar, “EPICS
Data Acquisition Device Support” in Proc. 14th Int. Conf on
Accelerator and Large Experimental Physics Control Sys-
tems (ICALEPCS2013), San Francisco, CA, USA, Oct.
2013, paper TUPPC059, pp. 707-709.

[3] J. Vega et al., “New developments at JET in diagnostics,
real-time control, data acquisition and information retrieval
with potential application to ITER”, Fusion Engineering
and Design, vol. 84, issue 12, pp. 2136-2144, Dec. 2009.
doi:10.1016/j.fusengdes.2009.02.055

[4] EPICS Project, https://epics-controls.org

[5] L. R. Dalesio et al., “EPICS 7 Provides Major Enhance-
ments to the EPICS Toolkit”, in Proc. 16th Int. Conf. on Ac-

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBR01

Device Control and Integrating Diverse Systems

TUBR01

341

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

celerator and Large Experimental Physics Control Systems
(ICALEPCS2017), Barcelona, Spain, Oct. 2017, pp. 22-26.
doi:10.18429/JACoW-ICALEPCS2017-MOBPL01

[6] A. N. Johnson et al., “EPICS 7 Core Status Report”, in Proc.
17th Int. Conf. on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS2019), New York, NY,
USA, Oct. 2019, pp. 923-927.
doi:10.18429/JACoW-ICALEPCS2019-WECPR01

[7] L. Zabeo et al., “Work-flow process from simulation to op-
eration for the Plasma Control System for the ITER first
plasma”, Fusion Engineering and Design, vol. 146, part B,
pp. 1446-1449, 2019.
doi:10.1016/j.fusengdes.2019.02.101

[8] GoogleTest/GoogleMock,
https://google.github.io/googletest

[9] Doxygen, https://www.doxygen.nl/index.html

[10] M. R. Kraimer et al., “EPICS: Asynchronous Driver Sup-
port”, in Proc. 10th Int. Conf. on Accelerator and Large Ex-
perimental Physics Control Systems (ICALEPCS2005), Ge-
neva, Switzerland, Oct. 2005, paper PO2.074-5.

[11] asynDriver,
https://epics-modules.github.io/master/asyn

[12] Tango Controls, https://www.tango-controls.org

[13] Control System Studio,
https://controlsystemstudio.org

[14] PVXS PVA client/server library,
https://mdavidsaver.github.io/pvxs

[15] M. Ruiz et al., “IRIO technology: Developing applications
for advanced DAQ systems using FPGAs”, 2016 IEEE-
NPSS Real Time Conference (RT), 2016, pp. 1-5,
doi:10.1109/RTC.2016.7543090

[16] M. Astrain et al., “A methodology to standardize the devel-
opment of FPGA-based high-performance DAQ and pro-
cessing systems using OpenCL”, Fusion Engineering and
Design, vol. 155, 2020, 111561,
doi:10.1016/j.fusengdes.2020.111561

[17] SonarQube, https://www.sonarqube.org

[18] NDSv3-core on GitHub,
https://github.com/Cosylab/nds3

[19] NDSv3-EPICS on GitHub,
https://github.com/Cosylab/nds3_epics

[20] ITER Git Repositories (account required),
https://git.iter.org/projects/CCS

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBR01

TUBR01C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

342 Device Control and Integrating Diverse Systems

