
Pysmlib: A PYTHON FINITE STATE MACHINE LIBRARY FOR EPICS
D. Marcato1,3,∗, G. Arena1, M. Bellato2, D. Bortolato1, F. Gelain1, G. Lilli1, V. Martinelli1,

E. Munaron1, M. Roetta1, G. Savarese1,
1INFN Legnaro National Laboratories, 35020 Legnaro, Italy

2INFN Padova Division, 35131 Padova, Italy
3Department of Information Engineering, University of Padova, 35131 Padua, Italy

Abstract
In the field of Experimental Physics and Industrial Con-

trol Systems (EPICS) [1], the traditional tool to implement
high level procedures is the Sequencer [1]. While this is a
mature, fast, and well-proven software, it comes with some
drawbacks. For example, it’s based on a custom C-like pro-
gramming language which may be unfamiliar to new users
and it often results in complex, hard to read code. This pa-
per presents pysmlib, a free and open source Python library
developed as a simpler alternative to the EPICS Sequencer.
The library exposes a simple interface to develop event-
driven Finite State Machines (FSM), where the inputs are
connected to Channel Access Process Variables (PV) thanks
to the PyEpics [2] integration. Other features include par-
allel FSM with multi-threading support and input sharing,
timers, and an integrated watchdog logic. The library of-
fers a lower barrier to enter and greater extensibility thanks
to the large ecosystem of scientific and engineering python
libraries, making it a perfect fit for modern control system re-
quirements. Pysmlib has been deployed in multiple projects
at INFN Legnaro National Laboratories (LNL), proving its
robustness and flexibility.

INTRODUCTION
The Experimental Physics and Industrial Control Systems

(EPICS) [1] is one of the most successful frameworks to
develop control systems for physics facilities, being used at
major laboratories and experiments all around the world. Its
main feature is the implementation of the Channel Access
(CA) (and the PV Access in newer versions), a standard
protocol where the different parts of the control system can
communicate. This provides a standard interface to access
all the Process Variables (PV) and works as a hardware
abstraction layer. Using this protocol, many components
have been developed by the community to provide the core
functionalities of a modern control system, like Phoebus [3]
and React Automation Studio [4] for Graphical User Inter-
faces (GUI) or the Archiver Appliance [5] for historical data
storage.

The sequencer is the tool proposed by the EPICS core
developers to implement high level procedures and Finite
State Machines (FSM) for process automation. This is an
extension of the core software and was first proposed in
1991 in the EPICS paper [1] and originally developed at
the Los Alamos National Laboratory. It defines a C-like
language called State Notation Language to develop finite
∗ davide.marcato@lnl.infn.it, www.davide.marcato.dev

Figure 1: Pysmlib logo.

state machines which is transcompiled to C code and then
compiled to machine code. The user can define states and
transitions, while the sequencer takes care of low-level de-
tails like the connection with the Channel Access, the event
handling and concurrency. Finally, the code is usually run
as part of a EPICS input output controller (IOC), which is
the piece of software which defines and publishes the PVs
on the Channel Access.

This software has proved valuable and has been widely
adopted thanks to its good performance, seamless integration
with the Channel Access and the IOC, and its programming
model. Even so, some of its limitations have emerged over
time. For example, being C-based was a great advantage
at the beginning since it means that one could extend it
with any C/C++ library. Today, higher level languages are
preferred for this kind of high level tasks, and performance
is no longer a limiting factor in most cases. For this reason
Python has emerged as one of the most prominent languages
for modern scientific and engineering computing, thanks to
a large number of dedicated libraries. Also, Python appeals
to a broader audience of less-technical programmers.

The PyEpics [2] python library, which wraps the origi-
nal libca C library, became thus a popular alternative to
communicate with the Channel Access. This can be used to
write both simple scripts and full blown programs. Large
experiments or collaborations used this, or similar wrappers,
to build tightly integrated high level suites which handle
automation and much more at facility level, such as ophyd
and bluesky [6]. These are great solutions, but require a big
investment into their design model, which could not be ideal
for simple tasks or small independent laboratories. Also, at
this level there is a lot of fragmentation in the community,
with no default go-to solution but many different approaches
tailored to the needs of specific laboratories.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBL05

TUBL05C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

330 Software Technology Evolution

In the middle between vanilla PyEpics scripts and full
experiment-wide software, there is still the need for a generic
standalone solution to develop finite state machines, where
the execution flow, event handling and connection with the
channel access is provided. Pysmlib aims to recreate the se-
quencer programming model and its strengths, while taking
advantage of the python language and focusing on ease of
use.

This paper formally presents the library to the scientific
community, describing its design and going into details on
the implementation and execution flow. Then an overview of
the user interface is presented and finally the current status
of the project and some plans for the future are outlined.

DESIGN PRINCIPLES
A Finite State Machine is a computational abstraction

where the program behaviour depends on its current state and
the input it receives. The machine can perform a transition
to a different state in response to inputs. For example the
schema in Fig. 2 represents a simple FSM with 3 states 𝑆1,𝑆2, 𝑆3 and 2 inputs 𝑥0, 𝑥1. The execution starts from 𝑆1 and
while 𝑥0 is 0 the current state does not change. When 𝑥0
becomes 1, the FSM executes a transition to 𝑆1. Now the
FSM follows the value of 𝑥1 by staying in 𝑆1 when its value
is 0 and moving to 𝑆2 when it becomes 1. In 𝑆2 the FSM
can go back to 𝑆0 if 𝑥0 becomes 0 or to 𝑆1 when 𝑥1 is 0.

Figure 2: Schematic representation of a FSM with 3 states
and 2 inputs.

This kind of abstraction is extremely useful to design
control system algorithms, where the controlled system can
be described with states and transitions, and the control
algorithm can be tuned for the current state.

Pysmlib aims to provide a simple way to describe Finite
State Machine states and transitions, while handling all com-
mon tasks and minimizing the custom code required. Thus,
it keeps track of the current state and executes it in response
to events and takes care of connecting the FSM to the inputs,
while providing the user some methods to access them. The
term input is here used both for input (readable) and output
(writable) signals. In fact, in pysmlib they are an abstraction
of Channel Access PVs, even though the library is designed
so that a future expansion to different types of inputs is rela-
tively easy and requires as little updates to the user interface

as possible. On top of the methods to read and write PVs
provided by PyEpics, the methods to detect rising and falling
edges or changes are provided, which are particularly useful
for the design of a FSM. Then, the user can implement the
FSM states as methods of a class, which represents the FSM,
with a specific naming convention and the library is able to
automatically discover them. When performing a transition
from one state to another, the user can decide to implement
entry and exit methods for each state, which are executed
only once during the transitions, as can be seen in Fig. 5.

Pysmlib is designed to maximize network efficiency and
system responsiveness, in order to be able to react with
minimum latency to input events. Thus, all the inputs are
connected at startup time, and the connection is kept in
memory during the whole execution. The current state is
executed every time a channel access event is received, in
a event driven way, without relying on a periodic loop. For
example, when an input changes its value or its connection
status, the current state is re-evaluated so that the FSM can
react to the new value, while the state is never executed if
no event is received. To optimize network usage, multiple
FSMs can be loaded and run in multi-threading while sharing
the connection to common PVs and a dispatcher is used to
broadcast channel access events to each FSM. The user is
expected to develop multiple FSMs, load them together on
a single daemon, using the provided loader helper, and let it
run continuously. This approach comes natural for always-on
operations (eg: a feedback correction) but it is also the ideal
execution flow for procedures that start from a user input or
some external conditions: in these cases the FSM will wait
on a idle state where no action is performed until the enable
signal is received, execute its core procedure, and then come
back to idle. This means that when the enable arrives, all
the inputs are already connected and the user doesn’t have
to wait for the FSM startup and all the connection times.

To ensure consistency, the inputs should not change value
or status during the execution of a state. For this reason
a queue of events is used and they are evaluated in order
one by one, where each event triggers one execution of the
current state of all the FSMs connected to such input. Along
with input events, the user can also set timer events, so that
the current state is executed after a custom amount of time.
This is useful to set timeouts or to execute periodic actions.
Other features include logging methods to write FSM logs
in a unified way, and a watchdog implementation. In fact,
contrary to the sequencer where the code is usually executed
on the same IOC that defines the PVs, here the FSM daemons
can run everywhere on the channel access network, and most
probably will run independently from the IOC and from the
user interface. A method to assert if the FSM is online and
running is thus needed, since the control system may rely
on the FSM to work correctly. For this reason a watchdog is
implemented, where the FSM will periodically write to an
external PV. The PV is then configured to raise an alarm or
an error when the write operation does not happen regularly.

Finally, pysmlib is developed as a generic library with no
dependency on the task to perform, and aims to be useful

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBL05

Software Technology Evolution

TUBL05

331

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

for a large audience of control system developers. It offers
an online documentation and follows open source standards,
where the users are encouraged to contribute.

SOFTWARE ARCHITECTURE
In this section the internal architecture of the library is

detailed, along with a description of the execution flow of a
FSM. Figure 3 shows a summary of the main classes with
their attributes and methods. These can be grouped into 4
modules, as highlighted by the color of the tables. Each
module concerns with one of the main features of the li-
brary: access to the inputs (green), FSM execution (blue),
timers (orange) and other smaller utilities (red). A complete
description of each module follows.

Figure 3: Diagram of the main classes and their most impor-
tant attributes and methods.

Input Management
The Channel Access defines some methods to access the

Process Variables: it’s possible to perform a get (read) or a
put (write) operation, but also to monitor a PV, that is reg-
ister to the IOC server to be notified about PV events. There
are 3 types of events: change events are emitted when the
PV has a new value, connection events when the connection
status changes and put complete events when a put operation
completes. With PyEpics it’s possible to register a callback
to be executed when one of these events occurs, so that the
event can be processed.

Pysmlib defines the epicsIO class which is responsible
to keep the connection with a PyEpics PV object and reg-
isters the callbacks on the Channel Access events. When
an event arrives a trigger method is executed, which will
pass a copy of the event data to all the attached FSMs. Each
FSM has a queue of events where this data is temporarily
placed, while waiting to process it. All of this is done on
the callback thread, while the queue consumption is done
on the FSM execution thread, so the queues must be thread

safe. Furthermore, this class is also responsible to perform
the put operations, which are directly executed by the FSM,
since the Channel Access already implements a queuing
system. The epicsIO class is instantiated when a FSM con-
nects to a new PV. To avoid duplicating connections to the
CA when different FSMs connect to the same PV, a helper
class (fsmIOs) is used. This class keeps track of the avail-
able inputs and creates a new epicsIO instance only when
required.

One important requirement is that an input does not
change during the execution of a FSM state. To achieve
this, every time a FSM connects to an input it creates a cor-
responding instance of fsmIO, a class which represents a
local copy of an input to each FSM. The execution follows
this pattern: first an event is removed from the queue, then
the local copy of the corresponding input is updated using
the event data and finally the current state is executed. This
pattern is repeated until there are no more events in the queue
and the thread waits idle for new ones. So each event brings
the update of a single input and triggers a single execution
of the current state. If the original IO changes during the
state execution, the local copy is not affected.

Figure 4 shows an example of the FSM execution flow in
response to a change event from an input. First, the regis-
tered callback is executed by the PyEpics library and all the
FSMs connected to the corresponding input are triggered.
Then, the event data is queued on the event queue and the
thread of the callback (blue in the figure) completes its exe-
cution. Now, the FSM thread (green in the figure) awakes
and consumes the available events one by one. In order to
keep the instance of fsmIO synchronized with the original
input, first the reset() method is called, which removes
old data, and then the update() one which feed the new
information. Finally, the current FSM state is executed by
calling the user-defined methods.

In the code, the user can inspect the new received value
thanks to the fsmIO class, which implements all the methods
to read and write the value and metadata of the input. For
example, it’s possible to read the current value with val(),

Figure 4: Execution flow of the FSM current state in re-
sponse to an event from an input.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBL05

TUBL05C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

332 Software Technology Evolution

connection status with connected() and the alarm severity
with alarm(), and to write the value with put(). Other
methods allow to detect rising or falling edges, or other tran-
sient properties of the input. For example, we want that the
connecting() method returns True only during the state
execution that was triggered by the connection event, and
not on the following ones. Conversely, the connected()
method will continue to return True until the input discon-
nects. This is especially useful for the design of a FSM to
perform some actions just once when a condition is met. To
implement this, the type of the current event is used to under-
stand what kind of event triggered the state execution. For
example, an input is changing() when the current event
is of change type, while it is rising() when the current
event is of change type and the new value is greater than the
preceding one.

Finite State Machine Execution
The FSM execution flow is managed by the fsmBase class.

The user is expected to derive from this class to implement
his own specific FSM. In the constructor of the derived class
the user will connect to all the inputs using the connect()
method, and will specify the first state to execute. This can
be done using the gotoState() method which accepts a
string with the state name as argument. After that the user
will implement the states as methods of the class. As illus-
trated in Fig. 5, for each state the user will implement a eval
method and optionally the entry and exit methods which
are executed only once during the state transitions. To be
correctly recognized, the methods must be called by concate-
nating the state name to _eval(), _entry() or _exit().
For example, for a state called idle, the user must define the
method idle_eval() and can optionally define the meth-
ods idle_entry() and idle_exit().

Figure 5: Entry, eval and exit methods can be implemented
for each FSM state.

The fsmBase defines a thread which runs the FSM states.
This thread initially waits on the event queue for some events
to populate it. When an event arrives, it is removed from the
queue and processed in order to update the fsmIO instance
of the corresponding input. Then the eval() method is
called, which is responsible for the actual state execution.
This method performs the following steps:

1. Perform a state transition if required. In this case it also
executes the _entry() method of the new state, if it’s
defined.

2. Execute the _eval() method of the current state.

3. If the user requested a state transition, the _exit()
method of the current state is executed. In this case go
back to step 1 without processing a new event.

The user can call gotoState(new_state_name) inside
the state _eval() method to perform a transition. In this
case, the execution loop is restarted from step 1 without
processing a new event, so that the new state is evaluated
once without waiting. The gotoState() function simply
saves the name of the next state and uses the getattr python
function to find the methods with the corresponding names.
The actual transition is executed in step 1 by updating the
pointer to the current state.

Other methods of the fsmBase class can be used to check
conditions on multiple inputs together or to retrieve the input
responsible for the current execution of the state. Further-
more, the class is used as a single interface for timers and
the logger, as explained in the following paragraphs.

Timers
Timers are used to schedule internal events, where the

current state is executed after a fixed amount of time. They
can be used to perform asynchronous operations such as
periodic writes or to enforce a timeout when waiting for
an external condition to become true. The user can set a
timer with the tmrSet() method of fsmBase, selecting an
identifying name and an expiration time in seconds, while
the methods tmrExpired() and tmrExpiring() can be
used to verify if a timer has expired in the past or in the
current event.

A single timer is represented by the class fsmTimer,
which keeps track of the expiration status. The class
fsmTimers, instead, is used to manage all the timers of
all the FSMs. This is a thread which keeps a list of timers
ordered by their expire time. When the FSM sets a timer, this
is added to the list in the correct place. The thread schedules
a waiting time equivalent to the remaining time of the first
timer in the list, and then triggers the corresponding FSM
by appending a timer expired event to its event queue. After
that it removes the timer from the list and schedules a new
waiting time. When the list is empty the thread waits idle
until a new timer is set.

All the timers, inputs, and each FSM live on different
threads, and thus create a complex multi-threading execution
flow. With pysmlib this complexity is completely hidden
from the user, which gets a well-tested core to build upon,
without worrying about low level details.

Utilities
On top of the core functionalities, the library offers useful

utilities to simplify the user code on some common tasks.
For example, the loader class provides methods to create a
launcher file which executes many FSMs in parallel. In fact,
after the development of the FSM classes, it’s often useful
to run different instances of the same FSM with different

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBL05

Software Technology Evolution

TUBL05

333

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

parameters, or simply to launch together correlated FSMs to
share common resources. The load method of the loader
class takes care of instantiating a FSM. It lets the user spec-
ify custom parameters to be passed to the constructor of the
FSM, but it adds some system parameters used to share com-
mon resources. For example, a single instance of fsmIOs
is created and passed to all loaded FSM in order to share
the inputs. The same mechanism is used to share the timer
manager thread.

The loader class is also used to configure log messages.
In fact, the library provides an abstraction of a generic log
facility which can be configured to send messages to dif-
ferent backends with a unified interface. At load time the
user can specify to log to file (logToFile()) or standard
output (default) and can set the verbosity level with the
setVerbosity() method, choosing between debug, info,
warning and error levels. Likewise, the fsmBase class pro-
vides the logD(), logI(), logW(), logE() methods
that can be used to write log messages with the correspond-
ing level. The logging facility is provided by the fsmLogger
class, which is currently a custom class with few options, but
can easily be expanded or replaced by the logging module
of python without any changes to the user interface, thus
minimizing the impact on the existing code.

Another shared resource is the fsmWatchdog class, which
provides the ability to periodically write to an external PV
while a FSM is running. This class is derived from fsmBase
and implements a specific FSM which periodically writes
the watchdog of all running, user-defined FSMs. The user
can define an input of an FSM to be used as the watchdog
PV by calling the setWatchdog() method of fsmBase on
the constructor of each FSM, and this will be automatically
passed to an instance of fsmWatchdog at load time. The user
can also specify the interval and the value to be written for
each watchdog, choosing between 0, 1 or an intermittent
value. The external PV should be configured so that when a
write operation does not occur after a specified time interval,
it raises an alarm. This can easily be achieved with the HIGH
field of a binary output PV.

DEVELOPMENT TOOLS
The development of the library adheres to modern stan-

dards for python projects. The code is well formatted and
documented, respecting the pylint indications. To ensure
easier updates to the core library automated tests have been
developed. These simulate the most common operations and
check if the expected result is achieved, so that the developer
can easily notice when an update or a new functionality intro-
duces bugs. The tests were developed using the pytest [7]
framework, and can be run directly with pytest or using
nox [8], a tool to automate test executions in different en-
vironments. In fact, given a list of python versions, it takes
care of creating a different conda environment for each ver-
sion, install the dependencies and run the tests. This way, it’s
easy to verify that the code continues to run correctly on all
supported versions of python. To simulate Channel Access

connectivity the pcaspy module is used, which helps run-
ning a PV server from python, without firing up a complete
EPICS IOC. Finally, the nox tests are run automatically on
the Gitlab CI [9] every time the code is pushed to the server,
so that the developer can be alerted of failures.

Since the library was developed with a broad and generic
audience in mind, it has also been published as free and open
source code on Github [10] with a GPLv3 license, which
is compatible with the EPICS open license. The library is
packaged as a standard python module using setuptools
and is available on the PyPI [11] python software repository,
so that it can be installed with just one command. Version
strings are managed using versioneer [12], a tool that
helps defining automatically the current version based on
the underlying git tag.

Figure 6: Pysmlib online documentation.

Web-based documentation was built using sphinx, which
generates beautiful HTML pages from reStructuredText files.
The resulting website can be seen in Fig. 6 and includes
some examples, a tutorial, and the detailed API description.
Finally, the HTML pages are hosted using Github Pages [13],
so that they are always available online.

USER EXPERIENCE
Pysmlib was first envisioned and developed for the radio

frequency (RF) control system [14] of the ALPI linear ac-
celerator at the INFN Legnaro National Laboratories (LNL).
This system requires a lot of procedures to power up, tune
and lock each cavity which were previously performed man-
ually. With this library it was possible to automate lots of
tasks, thus reducing the time and effort required to setup the
accelerator for a run.

Given the success in its first use case, the original code
was decoupled from the RF control system to create a general
purpose library that could be easily used on different projects.
Thus, version v2.0 introduced the pysmlib name and the
library was published online, complete with documentation.
Version 3 dropped the support for Python 2, which was
being deprecated, and further consolidated the user interface,

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBL05

TUBL05C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

334 Software Technology Evolution

adding methods to access the alarm state of an input and
improving the automated tests.

The library has been integrated into multiple projects at
Legnaro to automate different tasks, from simple ones like
acquiring the spectre of the beam using a magnetic dipole
to more sophisticate ones like online beam emittance mea-
surement or BOLINA [15] beam trajectory optimization
algorithm. Another common use case is to build simulators,
where the FSM reacts to control PVs simulating the effect
of a real object, which is useful to test the control system
software. For example, a FSM was developed to simulate
a wire scanner diagnostic complete with its handling mo-
tor. A FSM can also be used to build alarm handlers, like
telegram-epics-bot [16] which sends a Telegram mes-
sage to selected users when a PV enters the alarm state. In
general pysmlib is useful whenever it is necessary to develop
programs which are not executed one-shot, but are always
running waiting for the correct condition to execute their
task. In fact, the ability to detect edges on the PV values is
extremely useful for this scenario and with this library it is
provided by default.

In listing 1 an example of a minimal complete FSM is
provided, where the FSM is expected to copy the value of a
counter PV to a mirror one, when the enable PV is non-zero.

1 # ! / u s r / b i n / py thon
2 from sml ib impo r t fsmBase , l o a d e r
3

4 # FSM d e f i n i t i o n
5 c l a s s exampleFsm (fsmBase) :
6 de f _ _ i n i t _ _ (s e l f , name , ∗ a rgs , ∗∗ kwargs) :
7 s up e r () . _ _ i n i t _ _ (name , ∗∗ kwargs)
8 s e l f . c o u n t e r = s e l f . c onnec t (” counte r_pv_name ”)
9 s e l f . m i r r o r = s e l f . c onnec t (” mir ror_pv_name ”)

10 s e l f . e n a b l e = s e l f . c onnec t (” enable_pv_name ”)
11 s e l f . g o t o S t a t e (’ i d l e ’)
12

13 # i d l e s t a t e
14 de f i d l e _ e v a l (s e l f) :
15 i f s e l f . e n a b l e . r i s i n g () :
16 s e l f . g o t o S t a t e (” m i r r o r i n g ”)
17

18 # m i r r o r i n g s t a t e
19 de f m i r r o r i n g _ e v a l (s e l f) :
20 i f s e l f . e n a b l e . f a l l i n g () :
21 s e l f . g o t o S t a t e (” i d l e ”)
22 e l i f s e l f . c o u n t e r . chang ing () :
23 r e adVa lue = s e l f . c o u n t e r . v a l ()
24 s e l f . m i r r o r . pu t (r e adVa lue)
25

26 # Main
27 i f __name__ == ’ __main__ ’ :
28 # l o ad t h e fsm
29 l = l o a d e r ()
30 l . l o ad (exampleFsm , ” myFirs tFsm ”)
31

32 # s t a r t e x e c u t i o n
33 l . s t a r t ()

Listing 1: Example of a FSM implementation.

The FSM is implemented by defining a class which derives
from fsmBase. In the constructor the user can connect to any
amount of PVs, addressing them with their name and then
specify the first state to be executed. After that, the example

shows the definition of two states, called idle and mirroring.
These are implemented as methods of the class, with the
_eval suffix in their name. Initially the FSM evaluates the
idle state, until the enable PV rises from 0 to 1, which causes
the FSM to execute a transition to the mirroring state. In
this state the enable PV is continuously checked, so that
when an external user revert it back to 0 the FSM goes back
to the idle state. Until then, the mirroring state listens to
change events to the counter PV and copies the new value to
the mirror one. This is done with the changing() method
to avoid repeating continuously the put operation with the
same value, which could slow down the Channel Access,
and instead execute a put only once when the counter value
changes.

At the end of the example, the loader usage is demon-
strated. In this simple case a single FSM is loaded, with just
its name as parameter, and the execution is started with the
start() method. This is by default a blocking call and the
execution can be halted using a keyboard interrupt.

CONCLUSIONS AND FUTURE
IMPROVEMENTS

Pysmlib is now a stable project and aims to provide a
robust solution to the EPICS community to develop modern
Finite State Machines. The focus on simplicity and the
choice of the Python language make it a good choice for
both new and advanced users, who may take advantage of
the vast amount of Python scientific libraries.

While the user interface can be considered stable, future
updates will focus on improving the internal components
to improve the quality and expandability of the code. For
example, the current logger facility should be deprecated
in favor of the Python logging module to gain all of its
functionalities. A more object-oriented approach to events
could help to introduce more easily different kind of external
events, and thus different kinds of inputs. Currently only the
Channel Access inputs are supported, but an expansion to
the PV Access could be helpful to users of this newer EPICS
protocol. The library could also be generalized to work as a
generic Finite State Machine engine, where the user is able
to define its custom inputs and connect them to any kind of
external system. For this to work, a rigorous I/O interface
should be defined and documented.

Other improvements could be evaluated following user
suggestions, based on real-world use cases. Contributions
and fixes are welcome.

REFERENCES
[1] L. R. Dalesio, M. R. Kraimer, and A. J. Kozubal. “EPICS

architecture”, in Proc. ICALEPCS’91, 1991.
[2] M. Newville, et al., pyepics/pyepics Zenodo. doi:10.5281/
zenodo.592027

[3] CS-Studio (Phoebus), https://controlssoftware.sns.
ornl.gov/css_phoebus/.

[4] W. Duckitt, J.K. Abraham, “React Automation Studio: A
New Face to Control Large Scientific Equipment”, in Proc.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBL05

Software Technology Evolution

TUBL05

335

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Cyclotrons’19, Cape Town, South Africa, Sep. 2019, pp. 285-
288. doi:10.18429/JACoW-Cyclotrons2019-THA03

[5] M. Shankar, M. Davidsaver, M. Konrad and L. Li, “The
EPICS Archiver Appliance”, in Proc. 15th International Con-
ference on Accelerator and Large Experimental Physics Con-
trol Systems (ICALEPCS 2015), Melbourne, Australia, Oc-
tober 17-23, 2015. doi:10.18429/JACoW-ICALEPCS2015-
WEPGF030

[6] Bluesky Project and Ophyd, https://blueskyproject.
io/.

[7] Krekel et al., pytest 6.0.1, 2004, https://github.com/
pytest-dev/pytest

[8] Nox, flexible test automation for Python, https://nox.
thea.codes/en/stable/.

[9] Gitlab CI, https://about.gitlab.com/stages-

devops-lifecycle/continuous-integration/.
[10] : D. Marcato et al., Pysmlib Github repository, https://

github.com/darcato/pysmlib

[11] : D.Marcato et al., Pysmlib on PyPI software repository,
https://pypi.org/project/pysmlib/.

[12] B. Warner et al., The Versioneer, https://github.com/
python-versioneer/python-versioneer

[13] : D. Marcato et al., Pysmlib online documentation, https:
//darcato.github.io/pysmlib/docs/html/,

[14] D. Bortolato et al., “New LLRF control system at LNL”, in
2016 IEEE-NPSS Real Time Conference (RT), 2016, pp. 1-8.
doi:10.1109/RTC.2016.7543105

[15] V. Martinelli, et al., “High Level Software for Beam
6D Phase Space Characterization”, in Proceedings of
the 10th International Particle Accelerator Conference
(IPAC2019), Melbourne, Australia, 2019. doi:10.18429/
JACoW-IPAC2019-WEPGW025

[16] D. Marcato, Telegram EPICS bot, https://github.com/
darcato/telegram-epics-bot

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBL05

TUBL05C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

336 Software Technology Evolution

