
CI-CD PRACTICES AT SKA
Di Carlo M.∗, Dolci M., INAF Osservatorio Astronomico d’Abruzzo, Teramo, Italy

Harding P.1, U. Yilmaz, SKA Organisation, Macclesield, UK
Ribeiro B., Instituto de Telecomunicações Aveiro, Portugal

Morgado J. B., CICGE, Faculdade de Ciências da Universidade do Porto, Portugal

Abstract
The Square Kilometre Array (SKA) is an international

efort to build two radio interferometers in South Africa and
Australia forming one Observatory monitored and controlled
from global headquarters (GHQ) based in the United King-
dom at Jodrell Bank. SKA is highly focused on adopting
CI/CD practices for its software development. CI/CD stands
for Continuous Integration & Delivery and/or Deployment.
Continuous Integration is the practice of merging all devel-
opers’ local copies into the mainline frequently. Continuous
Delivery is the approach of developing software in short
cycles ensuring it can be released anytime, and Continuous
Deployment is the approach of delivering the software into
operational use frequently and automatically. This paper
analyses the decisions taken by the Systems Team (a special-
ized agile team devoted to developing and maintaining the
tools that allow continuous practices) to promote the CI/CD
practices with the TANGO-controls framework.

INTRODUCTION
When creating releases for end-users, every large software

endeavour faces the problem of integrating diferent parts
of their software solution and bring them to the production
environment. When many parts of the project are developed
independently for some time, an integration problem arises
when merging them into the same branch, consuming more
developer resources than originally planned. In a classic
Waterfall Software Development process this is usual but
also happens when following the classic Git Flow — also
known as Feature-based Branching, which is when a branch
is created for a feature. As an example, considering one
hundred developers working in the same repository each
of them creating one branch, merging can easily lead to
conlicts becoming unmanageable, for a single developer to
solve, thus introducing a delay in the releases (in literature
this is called ”merge hell”). This problem becomes evident
especially working with over a hundred repositories with
diferent underlying technologies. Therefore, it is essential
to develop a standard set of tools and guidelines to systemat-
ically manage and control diferent phases of the software
development life cycle throughout the organisation.

In the Square Kilometre Array (SKA) project, the selected
development process is SAFe Agile (Scaled Agile frame-
work) that is incremental and iterative with a specialized
team (known as the Systems Team) devoted to supporting
the Continuous Integration, Continuous Deployment, test
automation and quality.
∗ matteo.dicarlo@inaf.it

Continuous Integration (CI)
CI refers to a set of practices requiring developers to in-

tegrate code into a shared repository often. Each commit
is veriied by an automated build, allowing teams to detect
problems early in the process, giving feedback about the
state of the integration. Martin Fowler [1] states various
practices in this regard:

• maintain a single source repository for each system’s
component, favouring the use of a single branch;

• automate the build (possibly all in one command);

• automated test is run after build process for the software
to be self-testing (this is crucial: all beneits of CI rely
on the test suite being high quality);

• every commit should build on an integration machine:
the more developers commit the better it is (common
practice is at least once per day);

• frequent commits reduce potential conlicts: developer
worklow is reconciled on short windows of change;

• main branch must always be stable;

• builds must be fast so that problems are found quickly;

• multi-stage deployment: every software build must be
tested in diferent environments (testing, staging, etc);

• make it easy to get the latest version: all programmers
should start the day by updating their local copies;

• Everyone can see what’s happening: a testing environ-
ment with the latest software should be running.

Continuous Delivery & Deployment (CD)
Continuous Delivery [2] refers to a CI extension focus-

ing on sustainably automating the delivery of new software
releases. Release frequency can be decided according to
business requirements, but the greatest beneit is reached
by releasing as quickly as possible. Deployment has to be
predictable and sustainable, irrespective of whether it is a
large-scale distributed system, complex production environ-
ment, embedded system, or app. Therefore the code must
always be in a deployable state. Testing becomes the most
important activity, needing to cover enough of the codebase.

Often, the unsupported fact that frequent deployment
equals lower levels of stability and reliability, is assumed.
For software, the golden rule should be “if it hurts, do it
more often, and bring the pain forward” — [2], page 26.

There are many patterns around continuous deployment
related to the DevOps culture [3], ”the outcome of applying

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBL04

TUBL04C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

322 Software Technology Evolution



the most trusted principles from the domain of physical man-
ufacturing and leadership to the IT value stream. [...] The
result is world-class quality, reliability, stability, and security
at an ever lower cost and efort; and accelerated low and
reliability throughout the technology value stream, includ-
ing Product Management, Development, QA, IT Operations,
and Infosec”. It fosters increased collaboration between de-
velopment (requirements analysis, development and testing)
and operations (deployment, operations and maintenance)
within IT. In the era of mainframe applications was common
to have the two areas managed by diferent teams resulting
in a development team with low interest in the operational
aspects (managed by a diferent team) and vice versa. Shar-
ing responsibility means that development teams share the
problems of operations by working together in automating
deployment operations and maintenance, and in return, op-
erations have a deeper understanding of the applications
being supported. It is also very important that teams are
autonomous: being empowered to deploy a change to pro-
duction with no fear of failure. This is only possible by sup-
plying the necessary testing/staging platform and required
infrastructure tools for developers to engage with the plat-
forms and by using applications and deployment processes
that can be rolled out and reverted if required.

Automation is one of the key elements of a DevOps strat-
egy. It allows teams to focus on what is valuable (code
development, test results, etc.) instead of the deployment
itself, reducing human errors. The importance of those prac-
tises is to reduce risks of integration issues, releasing new
software and creating better software products. CD goes
one step further, as every single commit to the software that
passes all the stages of the build and test pipeline, is deployed
into the production environment — preferably automatically.

CONTAINERISATION
The system engineering development process was adopted

in the initial design phase of the SKA project to reduce com-
plexity by dividing the project into simpler elements. For
every element, an initial architecture was developed, which
comprises the software modules needed corresponding to a
repository — each a component of the system.

Since all components need to be deployed and tested to-
gether, the irst decision is how to package them. A container
is a standard run-time unit of software that packages code and
dependencies so that the component runs quickly and reli-
ably across diferent computing environments. A Docker [4]
container image is a lightweight, standalone, software pack-
age including everything needed to run an application: code,
runtime, system tools, system libraries and settings.

One of the main dependencies in the SKA software is the
TANGO-controls [5] framework, a middleware for connect-
ing software processes mainly based on the CORBA stan-
dard (Common Object Request Broker Architecture). The
standard deines how to expose the procedures of an object
within a software process with the RPC protocol (Remote
Procedure Call). TANGO extends the deinition of an object

with the concept of a Device that represents a real or virtual
device to control. This exposes commands (procedures),
and attributes (i.e. state) allowing both synchronous and
asynchronous communication with events generated from
attributes. Fig.1 shows a module view of the framework.

Figure 1: TANGO-controls simpliied data model.

The importance of containers becomes clear with depen-
dencies. The entire framework is packaged onto a set of
containers [6] so that the inal product is a containerized
application that will be run in a system for managing these
applications. Speciically, there is a SKA repository ska-
tango-images [6], encapsulating all its components in a set
of container images. Fig. 2 shows a simpliied diagram for
this project. By extending one of them, TANGO-controls
becomes a layer inside the base images of any SKA module
solving the dependency once for all.

Figure 2: SKA-tango-images repository.

Kubernetes (K8s) [7] is used for container orchestration
and Helm Charts [8] for declaring runtime dependencies
for K8s applications. In K8s all deployment elements are
resources abstracted away from the underlying infrastructure
implementation. For example, a Service (network conigura-
tion), PersistentVolume (ile-system type storage) or Pod (the
smallest deployable unit of computing, consisting of con-
tainers). The resources reside in a cluster (a set of connected
machines) and share a network, storage and other resources
like computing power. Helm is a tool for managing K8s
deployments with charts — a package of pre-conigured K8s
resources, tied to run-time instance coniguration.

Namespaces create a logical separation of resources
within a shared multi-tenant environment. A Namespace

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBL04

Software Technology Evolution

TUBL04

323

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



enforces a separate network and set of access rights enabling
a virtual private space for contained deployment.

ska-tango-images repository contains the deinitions of
two Helm Charts: ska-tango-base and ska-tango-util.

ska-tango-base: aplication Helm Chart deines the basic
TANGO ecosystem with the following K8s services:

• tangodb: MySQL database used to store coniguration
data used at the startup of a device server;

• databaseds: device server providing coniguration in-
formation to system’s components, and runtime cata-
logue of the components/devices;

• itango: interactive TANGO client;

• vnc: Debian environment with x11 window system
together with vnc [9] and noVNC [10] installed on it;

• tangorest: rest api [11] for TANGO eco-system;

• tangotest: TANGO test device server [12].

ska-tango-util: library chart helper for deining TANGO
device servers on applications. Deines the following Helm
templates:

• multidevice-conig: K8s ConigMap deining dsconig
JSON coniguration ile, bootstrap script for dsconig,
and python script for multi-class device server startup;

• multidevice-job: job for dsconig application to apply
a coniguration JSON ile set into the values ile;

• multidevice-sacc-role: K8s service account, role and
role binding that waits for coniguration job to inish;

• multidevice-svc: K8s service and a K8s StatefulSet for
a device server tag speciied in the values ile.

A Helm Chart contains at a minimum, information con-
cerning the version of the container images and pull policy
(image retrieval rule) for deployment. It also contains the
necessary information to correctly initialize the TANGO
database (device coniguration) and how is exposed to other
applications for discovery whiting the cluster.

Other SKA repositories Makeiles are selected as an
abstraction and organisation layer eliminating language-
speciic scripts for building, testing, deployment and pro-
moting ease of use in CI/CD. The use of a Makeile in each
project simpliies containerisation work and automation of
code building, testing and packaging processes, making it
possible with a single command to compile the project, gener-
ate container images and test them by dynamically installing
the related Helm Chart in a K8s environment.

The Makeile also enables publishing of container images
and Helm Charts to SKA artefact repository and promotes
reusability of the same build toolchain in diferent environ-
ments such as local development and CI/CD lifecycle.

ARCHITECTURE FOR INTEGRATION
In the previous section, was highlighted how the SKA

project can be seen as a set of elements composed by a
set of software modules corresponding to a repository. For
each repository, one or more container images are built and
pushed into the artefact repository (Nexus [13] box shown
in ig. 5) while for each element, a Helm Chart is published
into the same storage solution.

Since a Helm Chart can be in a dependency relationship
with another chart, this concept can be used for integrating
the various SKA elements which comprise the SKA MVP
Product Integration (SKAMPI [14]) in a composable way
representing the bulk of the efort for integrating all SKA’s
software sub-systems. Fig.3 shows a simplistic view of this
above concept and its hierarchy.

Figure 3: SKAMPI.

It is important to consider the operational aspects of the
Helm dependencies which state that when Helm installs/up-
dates a chart, the K8s resources from the chart and all its
dependencies are aggregated into a single set, sorted by type
followed by a name, and created/updated in that order. Due
to this, a limit was imposed for single-level hierarchy with a
parent chart, called the umbrella chart, which pulls together
the charts of the hierarchy. While SKAMPI is the composi-
tion of the entire hierarchy, it is possible to think of diferent
umbrella charts for other purposes like integration testing
between a select few elements of the hierarchy. Fig. 4 shows
the umbrella chart concept: the blue umbrella chart is the
entire hierarchy while the red and green ones are for other
purposes. This means that every SKA element can perform
its integration testing by creating an umbrella chart with
sub-elements needed for its integration.

Figure 4: The umbrella chart concept.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBL04

TUBL04C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

324 Software Technology Evolution



SKA INFRASTRUCTURE
To support the integration’s architecture an infrastructure

was built consisting of a standard footprint of VPN/SSH
JumpHost gateway (called Terminus), Monitoring, Logging,
Storage and K8s services to support the GitLab [15] runner
architecture, and MVP testing facilities as shown in Fig.5
used to support DevOps and Integration testing facilities.

Figure 5: STFC cloud components.

A K8s cluster was deployed with 1 LoadBalancer, 3 Mas-
ter, and 6 Worker coniguration. Fig.6 illustrates how the
LoadBalancer ties K8s services together exposing deployed
applications to the outside world. The K8s API Server is
exposed externally from Terminus using TCP pass-through,
and NGiNX [16]’s Ingress Controller is SSL terminated for
external access. These services are exposed using an NG-
iNX reverse proxy. Ingress access on port 443 is password
protected using oauth2-proxy [17] integration with GitLab.

Figure 6: Kubernetes components.

In Fig.7 it is hown the K8s runner [18] works as a 
multiplexer receiving requests from GitLab for jobs and 
launching their respective Pods up to a conigured scaling 
limit (15 cur-rently). GitLab’s runners use intermediate 
cache to speed up jobs by passing dependencies between 
them. This cache is based on Minio [19] with S3 [20] 
compatible buckets for storage.

Figure 7: GitLab runner.

PIPELINE
To bring everything together for a complete CI/

CD toolchain, GitLab [15] was selected. The data 
model for a generic SKA software is shown in Figure 8.

Figure 8: Pipeline deinition data model.

The entry point of the diagram is the Pipeline box, com-
posed of several jobs. This was standardised for each project
regardless of its artefacts so that the same standardised steps
for code/coniguration and Helm Charts are followed:

• linting: code is analysed against sets of coding rules
to check if it follows the agreed best practices;

• build: code is compiled and a container image created;

• test: compiled package (and image) are tested;

• publish: code artefacts are published;

• pages: test results are published (GitLab’s naming).

The pipeline is respected as the main hub of software de-
velopment in which code is built, tested, veriied, published
and integrated. These steps are used in local development
(where the same shell scripts are available thanks to the
Makeile targets), merge worklow, QA, integration and re-
lease. Also, having an almost identical platform environment

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBL04

Software Technology Evolution

TUBL04

325

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



for diferent stages of the software lifecycle, signiicant difer-
ences between development and operations are eliminated.

Fig.9 shows a simpliication of the run-time behaviour of
the selected technologies working together. At the centre
part, there is a K8s cluster deined for every project in SKA’s
telescope. Outside the K8s cluster, are GitLab code reposi-
tories and pages, Nexus Artifact repository [13] (store pack-
aged code artefacts), ELK stack (Elasticsearch, Logstash and
Kibana) [21] for logging, prometheus [22] for monitoring
(metric collection) and Ceph [23] for distributed storage.

Inside the cluster, in an isolated K8s Namespace, are the
GitLab runners related K8s resources, checking every 30
seconds if there are pending pipelines triggered manually or
pulled by resources. If the runner inds a pipeline, it creates
a K8s Pod for each job deined in the coniguration ile.
Each created Pod is capable of deploying an umbrella chart
needed for speciic testing of the repository in an isolated
Namespace. The installed deployment can then be tested
and the job’s result will be reported to GitLab producing
artefacts, to be stored in the correct artefact repository.

During any stage of the pipeline, jobs can download re-
quired dependencies from the artefact repository. Depending
on the type of job, the pipeline is used for deploying the per-
manently running version of SKAMPI or other resources
needed. The K8s cluster is equipped with monitoring solu-
tions to examine the cluster’s health and performance and
any resources that are deployed in it. Storage and logging
solutions are integrated to provide a consistent logging and
distributed storage framework for the resources. Finally, this
architecture for creating temporal K8s resources for pipeline
steps (testing, building, packaging, etc.) ensures that neces-
sary environments for the jobs are always clean — i.e. not
afected by previously run pipelines.

Figure 9: CICD at run time.

TESTING
The most important in CI is testing, so we need to ques-

tion ourselves how a generic component of the SKA can
be tested with the above architecture. At the SKA, testing
was split into two distinct types: pre-deployment and post-
deployment. Deployment happens when a runner executes

a job with a GitLab environment keyword. By doing so, the
job is linked to the K8s cluster through GitLab coniguration.
While pre-deployment tests (unit tests) are made without
the real system online (using stubs and mocks), other tests
(integration and system tests) need more than one live sys-
tem component to be up and running as they will be using
other services and applications. The SKA is composed of
several distinct modules, each of them with its repository
and diferent requirements for the components needed for
integration and system testing. For each, an umbrella chart
was introduced which enabled the speciic component to
be deployed together with its dependencies. Speciically,
to enable the GitLab pipeline to deploy and test the chosen
component each repository must:

• contains at least one Helm Chart;

• has an environment;

• has a Makeile for K8s testing.

A set of templates and standardized Makeiles was devel-
oped by the System Team, so it is only necessary to include
them in the repository. The post-deployment test job is then
composed of the following steps deined in those Makeiles:

• install: installs chart (and sub-charts) in the Namespace
speciied in the environment;

• wait: wait for every container to be running;

• test:

– create container in the Namespace speciied in
the environment;

– run PyTests inside this container;
– return test results.

• post test: delete all resources allocated for tests.

The artefacts are the output of the tests, containing reports
both in XML and JSON and other (i.e. PyTest’s) output
so that consequent pipeline steps (mostly packaging and
releasing) can be run.

DEVELOPMENT WORKFLOW
There are two important assumptions for understanding

SKA’s development worklow: the master branch shall al-
ways be stable, and branches shall be short-lived. Stable
means that the master branch always compiles, and all au-
tomated tests run successfully. This also means that every
time a master branch results in a condition of instability,
reverting to a condition of stability shall have precedence
over any other activity on the repository. As a result, the
selected development worklow for SKA is the following:

• developer works on current code base’s copy;

• work on a story starts on a new branch named after it;

• developer frequently commits changes to local git repo;

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBL04

TUBL04C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

326 Software Technology Evolution



• developer creates unit tests to be run on local environ-
ment until they successfully pass;

• once tests pass, changes are pushed to a remote branch;

• CI server (GitLab):

– checks out changes when they occur;
– runs static code analysis providing feedback;
– builds system and runs unit and integration tests

on the branch;
– provide feedback to developer about test status;
– provide feedback about coverage metrics.

• once all branch’s tests execute successfully, the devel-
oper opens a pull request (i.e. GitLab’s Merge Request)
for merging changes onto master;

• code is reviewed and approved by other developers;

• code is merged into the master branch;

• CI server (GitLab):

– runs whole pipeline again including the tests on
master branch;

– releases deployable artefacts for testing (reports,
code analysis, etc.);

– assigns build label the code’s version built (i.e.
docker image version);

– alerts team if build or tests fail for them to ix
issue ASAP;

– publishes the successful build artefacts to artefact
repository.

CI-CD AUTOMATION AND QUALITY
To verify if all best practices are followed, plugins and

tasks were implemented to perform quality checks on Git-
Lab’s merge requests and artefacts published to Nexus.
Fig.10 shows a module’s view of the frameworks for those.

Figure 10: CI-CD automation framework.

The above diagram shows three main packages:

• ska-cicd-services-api [24] which includes all APIs that
will be used in the other two packages. These APIs al-
low to communicate with GitLab (i.e merge request
creation or for project information), Slack [25] (i.e.
sending messages to channels), Jira [26] (i.e. project
information) and Nexus (i.e. obtaining component in-
formation);

• ska-cicd-automation [27] which uses FastAPI [28] to
build a Python web application with a plugin architec-
ture. Three plugins have been created: gitlab_mr used
for merge request quality checks and providing feed-
back to developers directly on GitLab; jira_support to
handle jira operations and nexus_webhook to trigger
webhooks every time a new artefact is published;

• ska-cicd-artefact-validations [29] based on Celery
[30] containing a main server pulling messages from Re-
dis [31], transforming them into artifact validation tasks
and storing the results into a MongoDB [32] database.

Merge Request Quality Checks
To ensure that every developer follows the development

worklow and best practices, automated checks are per-
formed on Merge Requests. A webhook was added to the
ska-telescope GitLab group, which triggers a service (ig. 10
ska-cicd-automation [27]) every time a new Merge Request
is created. The quality checks will then verify if:

• the Merge Request Settings were set correctly;

• the branch name, the commit messages and the merge
request have a Jira Ticket ID;

• the project has a proper license;

• the project as documentation on it and if it was updated;

• the project has pipelines with the needed jobs.

After performing the checks, their result is reported 
back to the developers on GitLab’s main Merge Request 
page via a comment (see Fig. 11 for an example of the 
comment, includ-ing a table with the severity of the failed 
check, description about the check and mitigation 
strategy).

Figure 11: Checks results table.

Nexus Artefact Validation
There are many packaged code artefacts of multiple for-

mats being created in the SKA project hosted on GitLab

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBL04

Software Technology Evolution

TUBL04

327

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



and then published to the Nexus Artifact repository. Those
should follow SKAO’s conventions: Artefact names should
be compliant with semantic versioning 2.0.0 [33] and must
include associated metadata with the required information,
such as who published it, from which GitLab repository is
they originate from and other useful information.

To ensure that the guidelines and policies described are
followed for consistent, compliant and robust artefact man-
agement, there are a series of automated validations in place
at ska-cicd-artefact-validations [29]. If an artefact fails val-
idation, it is moved to a quarantine state and the results of
the checks are reported back to developers that triggered the
pipeline that published it. This report is made by creating a
new Merge Request where the developer is made assignee
and its description contains a table composed of the failed
validations and instructions on how to mitigate them.

The execution of artefact validations happens following
the Celery architecture with a server that pulls messages from
a queue (Redis) and creates tasks (processes) to perform
the speciic validation. Every task can then create other
tasks as needed to perform other activities (i.e. quarantine
the artefact or create merge request on GitLab). The result
validation is stored in a MongoDB database.

When an artefact is published on the GitLab job the fol-
lowing tasks are performed:

• validation: performs the validation checks;

• get metadata: extract existing metadata from artefacts;

• container scanning: scans for container vulnerabilities
using Trivy;

• quarantine: quarantine artefacts if any checks fail;

• create MR: create MR to report failures to developers;

• insert DB: insert metadata into MongoDB about the
validation performed.

With the above tasks, it is possible to keep and maintain
a clean and organized repository, where all artefacts follow
the guidelines and policies deined on the project.

CONCLUSION
The majority of decisions taken by the Systems Team

follow the worklow described by the Continuous Integration
process outlined in Martin Fowler’s paper inspired by the
state-of-the-art industry practices of [1–3]. In particular:

• for each component of the system, there is only one
short-lived repository with minimal use of branching;

• artefact build, tests and publishing are automated with
the use of few commands (Makeile targets);

• every commit triggers a build in a diferent machine;

• once artefacts are built, the SKAMPI will automatically
create a new deployment of the system and more tests
will be done at that level (i.e. system tests);

• having a common repository (Nexus and GitLab pages)
for the code artefacts and test results simpliies down-
loading the latest changes from every team and for each
component to enable fast development;

• the integration environment is accessible to all develop-
ers and deployed in a unique Namespace on the cluster.

In addition, every artefact is validated in terms of quality
so that a common standard across the project is maintained.

ACKNOWLEDGEMENTS
This work was supported by Italian Government (MEF -

Ministero dell’Economia e delle Finanze, MIUR - Ministero
dell’Istruzione, dell’Università e della Ricerca).

REFERENCES
[1] Martin Fowler, Continuous Integration,
https://martinfowler.com/articles/

continuousIntegration.html

[2] J. Humble, D. Farley, ”Continuous Delivery: Reliable Soft-
ware Releases Through Build, Test, and Deployment Au-
tomation”, 2010, ISBN (0321601912, 9780321601919), Pub.
Addison-Wesley Professional

[3] G. Kim, P. Debois, J. Willis, J. Humble, ”The DevOps Hand-
book: How to Create World-Class Agility, Reliability, and
Security in Technology Organizations”, ISBN (1942788002
9781942788003)

[4] Docker, https://www.docker.com/

[5] TANGO-controls, https://www.tango-controls.org/

[6] ska-tango-images repository, https://gitlab.com/

ska-telescope/ska-tango-images

[7] Kubernetes, https://kubernetes.io/

[8] Helm, https://helm.sh

[9] v11vnc, https://github.com/LibVNC/x11vnc

[10] noVNC, https://github.com/novnc/noVNC

[11] TANGO-controls REST API, https://gitlab.com/
tango-controls/rest-api

[12] TANGO-controls test device server, https://gitlab.com/
tango-controls/TangoTest

[13] Nexus, https://www.sonatype.com/nexus/

repository-pro/

[14] SKAMPI - SKA Mvp Prototype Integration, https://
gitlab.com/ska-telescope/ska-skampi

[15] GitLab, https://gitlab.com/

[16] NGINX, https://www.nginx.com/

[17] OAuth2 Proxy, https://github.com/oauth2-proxy/
oauth2-proxy

[18] GitLab Runner, https://gitlab.com/ska-telescope/
sdi/deploy-gitlab-runners/

[19] MinIO, https://operator.min.io/

[20] Amazon S3 buckets, https://aws.amazon.com/it/s3/

[21] Elasticsearch, https://www.elastic.co/

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBL04

TUBL04C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

328 Software Technology Evolution



[22] Prometheus, https://prometheus.io/
[23] Ceph Storage, https://ceph.io/
[24] ska-cicd-services-api, https://gitlab.com/

ska-telescope/sdi/ska-cicd-services-api

[25] Slack, https://slack.com
[26] Jira, https://www.atlassian.com/software/jira
[27] ska-cicd-automation, https://gitlab.com/

ska-telescope/sdi/ska-cicd-automation

[28] FastAPI, https://fastapi.tiangolo.com/

[29] ska-cicd-artefact-validations, https:

//gitlab.com/ska-telescope/sdi/

ska-cicd-artefact-validations

[30] Celery, https://docs.celeryproject.org/en/

stable

[31] , Redis, https://redis.io/

[32] MongoDB, https://www.mongodb.com

[33] Semantic versioning 2.0.0 https://semver.org/

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBL04

Software Technology Evolution

TUBL04

329

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I


