
IMPLEMENTING AN EVENT TRACING SOLUTION WITH
CONSISTENTLY FORMATTED LOGS FOR THE SKA TELESCOPE

CONTROL SYSTEM
S.N. Twum∗, W. Bode, A. F. Joubert, K. Madisa, P.S. Swart, A. J. Venter

SARAO, Cape Town, South Africa
A. Bridger, UKATC, Edinburgh; SKAO, Macclesfield

Abstract
The SKA telescope control system comprises several de-

vices working on different hierarchies on different sites to
provide a running observatory. The importance of logs,
whether in its simplest form or correlated, in this system as
well as any other distributed system is critical to fault finding
and bug tracing. The SKA logging system will collect logs
produced by numerous networked kubernetes deployments
of devices and processes running a combination off-the-shelf,
derived and bespoke software. The many moving parts of
this complex system are delivered and maintained by dif-
ferent agile teams on multiple SKA Agile Release Trains.
To facilitate an orderly and correlated generation of events
in the running telescope, we implement a logging architec-
ture which enforces consistently formatted logs with event
tracing capability. We discuss the details of the architecture
design and implementation, ending off with the limitations
of the tracing solution in the context of a multiprocessing
environment

PREVIEW TO THEORY AND SKA
SYSTEM ARCHITECTURE

Observability and Monitoring in a Distributed Sys-
tem

Logs have long been the de facto approach used to sample
parts and peek into the internal state of a running program.
Coupled with metrics, monitoring can be done across a sys-
tem to understand its health at any given time. Inasmuch
as this age old approach has been very beneficial to devel-
opers, especially for debugging purposes, it is limited in its
diagnostic ability in distributed environments. Monolithic
applications are easily observable using only logs and met-
rics. But in the dawn of the era of microservice architecture,
logging alone is not adequate to debug and probe the internal
state of such a system. Distributed systems with different
services and multiple instances of these services need a cor-
related view of events to troubleshoot errors. It now requires
the use of logs, metrics and traces, all together producing the
emergent quality of this new buzz word, “observability”. J.
Heather explains observability as inferring the internal state
of a system from its external outputs. But it is not just the
ability to see what is going on in your systems. It’s the ability
to make sense of it all, to gather and analyze the information
you need to prevent incidents from happening, and to trace

∗ stwum@sarao.ac.za

their path when they do happen, despite every safeguard, to
make sure they don’t happen again[1]. Full observability of
a distributed system is a function of three pillars [2], namely:

• Logs: a snapshot of an event in a running system.

• Metrics: measurement of activities on a running system,
e.g. CPU load.

• Tracing: A trace is a representation of a series of
causally related distributed events that encode the end-
to-end request flow through a distributed system [2].

An Overview of the SKA Telescope Control System
Architecture

The SKA telescope control system will be a collection of
software and services running from two sites which will be
controlled from HQ in Jodrell Bank. The software consists
of Tango Devices managing specific telescope hardware,
and processes running all manner of software which are
maintained by 17 or more teams on our Agile Release Trains
(ARTs) [3]. The control system has a hierarchical structure
to reduce complexity. The TANGO device is an abstrac-
tion hierarchy that has functional purpose at the top, and
that goes down to physical form at the bottom. The fre-
quency of intervention required at the different levels are
different, increasing as you go downward the hierarchy (the
Telescope Operator will exercise low frequency supervisory
control, while at the lowest level you find real-time, closed
loop feedback control) [4]. Control propagates downward
(with fan-out) through this hierarchical structure. This is
one source of causal path for events to propagate through
the system.A specialisation of this hierarchical structure is
that of the sub-array, an aggregation of telescope resources
that are engaged for use in an observation [5]. Figure 1 il-
lustrates the usage of sub-array nodes to control of the Mid
telescopes.

During the lifetime of a running telescope, commands
are triggered, events are fired, threads are spawned, several
things are happening at the same time and it is not a trivial
task to have end to end observability of the running system.
This complex network exudes all the characteristics and
challenges that are inherent in distributed systems. Though
the various moving parts of the system are well tested, they
are susceptible to faults and the ability to pin point a glitch
to an exact root cause, following it through the various parts
can only be provided in a distributed tracing system.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBL02

Software Technology Evolution

TUBL02

311

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Figure 1: Hierarchy of tango devices demonstrating the control of the Mid telescopes using sub-array nodes [5].

In order to glean correlated debugging information for
the SKA distributed services/devices architecture, we first
adopted a standardised approach to logging across all pack-
ages maintained by the different teams and then, imple-
mented a tracing solution in the form of transaction IDs
to be used by Tango commands. The remaining sections
discuss in detail the design decisions on our logging stan-
dard and the transaction IDs used to provision our tracing
solution.

HARMONISING APPROACHES TO
LOGGING IN THE SKA

SERVICES/DEVICES SYSTEM

The SKA logging system collects, stores and retrieves logs
from derived, off-the-shelf and bespoke software. All these
different logs sources are maintained in different packages by
different teams on the SKA Agile Release Train. Prior to the
harmonised logs, each team had their own logging standard.
After a review of the different logging approaches used by
the teams, we provided a reference logging implementation
which implements a standard log format. The details about
the standard log format follow in the next section.

SKA Standard Log Format
The SKA log format ensure logs are emitted in a uniform

manner to aid in troubleshooting and parsing. All processes
executed inside a container log to stdout. For the emitted
logs to be ingested into the logging system, they have to
conform to the format below [6]:
VERSION"|"TIMESTAMP"|"SEVERITY"|"[THREAD-ID]"|
"[FUNCTION]"|"[LINE-LOC]"|"[TAGS]"|"MESSAGE LF

Example log in the ska log format is below:
1|2019-12-31T23:12:37.526Z|INFO||testpackage.
testmodule.TestDevice.test_fn|test.py#1|
tango-device:my/dev/name| Regular information
should be logged like this FYI

The log message format is not an extension of sys-
log/RFC5234 format. More on the SKA log message format
can be found on the SKA Telescope Developer Portal 1.

To aid in filtering, Table 1 below describes tags that have
been adopted as standard tags which may be found in a log
message.

1 https://developer.skatelescope.org/en/latest/tools/logging-format.html

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBL02

TUBL02C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

312 Software Technology Evolution

Table 1: SKA Standard Tags for Logs [6]

Tag Name Description Example
tango-device An identifier string in the form:<facility>

/<family> /<device>. This corre-
sponds with a Tango device name.

• facility: The TANGO facility encodes
the specific telescope (LOW or MID)
and the telescope sub-system (SaDT,
TM, SDP, CSP, Dish, LFAA, INFRA)

• family: Family within facility

• device: TANGO device name

MID-D0125/rx/controller

• MID-D0125: where 0125 is the serial
number of the Dish instance

• rx: The Single Pixel Feed Receiver of
the Dish

• controller: The controller of the Sin-
gle Pixel Feed Receiver

subsystem For software that are not TANGO devices,
the name of the telescope sub-system.

SDP

transac-
tion_id

Transaction ID to associate logs from differ-
ent systems relating to a distributed activity

txn-t0001-20200928-000000010

Design Motivation
The preliminary results gathered from analysing the code

base of existing projects at the time drove the design of our
current standard. We prioritised:

• Readability

• A sensible size of log length to provide useful informa-
tion. The minimum required are:

– timestamp

– log level

– extensible tags - a mechanism to specify arbitrary
tags

– the function in the source code where the log
emanates from

– the filename where the log call originates

– the line number in the file

• Ability to parse the log message.

The SKA Logging Configuration Library
The SKA logging format is hosted in the ska-telescope

gitlab repository as a python package. The package allows
developers to configure logging for any module to have all
applications log in a consistent format [7]. The SKA tags de-
fined in Table 1 above can be added to a tags filter available in
the library among other configurations. All new ska projects
in both the Observation and Management Control and Data
Processing ARTs use this logging library as do the existing
ones before the format and its library were implemented.

Figure 2: Kibana logs filtered using the value of the
ska_tags_field.tango-device field [6].

Figure 3: Kibana logs with only messages with
the value ska_mid/tm_leaf_node/d0003 for the
ska_tags_field.tango-device field [6].

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBL02

Software Technology Evolution

TUBL02

313

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

TRACING EVENTS IN THE SKA
CONTROL SYSTEM USING

TRANSACTION IDS
The SKA control system churns out logs and aggregates

metrics for system health monitoring; the missing piece to
the full observability puzzle was the ability to obtain corre-
lated log trails (tracing) of events. Tracing is the the only
signal which explains the relationship between the different
parts of the system which are managed by the different teams
in our ARTs. It is nearly impossible to debug and discover
patterns or correlations in the SKA control system searching
through the gigantic logs being aggregated from the many
services running in the kubernetes orchestrated environment.
With the SKA formatted logs complete, it served as a scaf-
fold to build the tracing solution by injecting a transaction
ID in the logs. This design was driven by the snippet below:

with transaction('My Command') as txn_id:
do stuff
...

The idea in the snippet above is to ensure that any action per-
formed within the context of the transaction will have record
of an id for tracing. The transaction ID is cascaded down
further requests until a trace is complete. In the SKA con-
trol system, the transaction context handler is implemented
in a transactions python library 2 which relies on the SKA
Logging 3 and SKA Unique Identifier (SKUID) 4 libraries.

SKA Unique Identifier Library
The SKUID library does more than just generate unique

ids for transactions. It generates scan ids, entity ids and
transaction IDs for telescope operations [8]. The scan and
entity ids are out of this discussion’s context. The transaction
ID is generated every time a transaction context block is
initialised. It is a unique value served by a remote or local
unique id generator (which can possibly generate a duplicate).
The remote URL has a generator-id following right after
the “txn” prefix (e.g. txn-t0001-20200914-123456789)
while the local generator has “local” right after the “txn”
prefix (e.g. txn-local-20200921-516590971).

SKA Log Transactions Library
This library glues together the SKUID and logging pack-

ages to provide a transaction ID in a context handler which
is injected into logs as a tag [9]. Within the context handler
there is an enter and exit log entry which log the beginning
and the end of a transaction using the generated transaction
ID or a specified custom ID. In the event an exception occurs
within the transaction, an exception log will be emitted with
the transaction ID also. An example log on entry and exit of
the transaction context in the ska log format looks like this:
2 https://gitlab.com/ska-telescope/ska-ser-ska-ser-log-transactions
3 https://gitlab.com/ska-telescope/ska-ser-logging
4 https://gitlab.com/ska-telescope/ska-ser-skuid

1|2020-10-01T12:49:31.119Z|INFO|Thread -210|
log_entry|transactions.py#154||Transaction
[txn-local -20201001-981667980]: Enter[Command]
with parameters [{}] marker[52764]

1|2020-10-01T12:49:31.129Z|INFO|Thread -210
|log_exit|transactions.py#154||
Transaction[txn-local -20201001-981667980]:
Exit[Command] marker[52764]

To demonstrate the usage of the log-transaction library, a
multi-level device has been added as an example in the ska-
tango-examples 5 library. This multi-level device compro-
mises a top-level device, four mid-level devices and one
low-level device as depicted in Fig. 4.

The mid-level devices are triggered from commands in
the top-level device and they in turn call the low-level device.
During the interaction between these devices, the transaction
ID generated at the top-level is propagated all the way to the
low-level device and appears as tags in the logs as shown in
Fig. 4. The rest of the logs are a combination of logs showing
entry and exit into mid-level and low-level devices. When
all mid-level devices with their associated low-level device
triggers are finished, the trace ends with a log indicating an
exit from the top-level device [10].

Tracing in a Multithreaded Environment

Though the log transactions library has support for async
code it does not support a multithreaded case at the moment.
Consider the scenarios in the code snippets below:

SCENARIO 1
class Device(Device):

def function_that_logs(self):
do_something()
log.info("logging something") # The

same thread, so this should log
a transaction ID

↪

↪

@command
def some_command(self):

with transaction("name", parameters,
logger=ska_logger) as
transaction_id:

↪

↪

function_that_logs()

5 A project that demonstrates how to structure an SKA project that provides
some simple Tango devices coded in PyTango. See https://gitlab.com/ska-
telescope/ska-tango-examples

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBL02

TUBL02C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

314 Software Technology Evolution

Figure 4: Diagrammatic illustration of the tango-example multi-level device and interaction among those devices.

SCENARIO 2
class Device(Device):

def function_that_logs(self):
do_something()
log.info("logging something") #

This will not have a
transaction ID

↪

↪

@command
def some_command(self):

with transaction("name", parameters,
logger=ska_logger) as
transaction_id:

↪

↪

t = threading.Thread(
target=function_that_logs,

args=(1,))↪

t.start()
t.join()

The code in SCENARIO 1 will produce a log just like
in the example log above with the transaction ID in it but
the log from SCENARIO 2 will not. The same is true for
work passed off from a transaction to a thread managed
by a thread pool. The thread lifetimes would exceed the
transaction. This applies to code with or without asyncio or
gevent.

FUTURE WORK

The enablers for the functioning of the SKA log transac-
tion, namely SKA logging and SKA unique ID generator, do
not have any left over features to be added except the local
ID generation of the SKUID service to guarantee absolute
uniqueness. This is trivial at the moment as the SKUID
service URL is served up all the time in the integration envi-
ronment. Having had all three pillars of distributed system
implemented, the logical next step is to build the tooling
we need to facilitate system diagnosis. The tooling will be
available in all ART and will display to a user the flow of
information and state across the MVP. At the time of im-
plementing the log transaction, the SKA Telescope Control
System is currently been demonstrated in an MVP and there
is no clear evidence of that our troubleshooting would benefit
from this feature. The need for it will be assessed and im-
plemented as the project progresses, especially with AA0.5
release at hand.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBL02

Software Technology Evolution

TUBL02

315

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

CONCLUSION
To fully understand a distributed system requires us to

have distributed tracing. Tracing compares to a database
join with the contributing tables being the different paths
the event travels through and each event having an ID on
which the join is performed [11]. The SKA Control System
like every other distributed system poses a big observability
challenge. To be able to infer the internal state of both
low and mid telescope control systems, we have developed
libraries to ensure running applications have consistently
formatted logs with tracing. All the work done are available
in public repositories under the ska-telescope organisation in:
ska-ser-logging, ska-ser-skuid and ska-ser-log-transactions.

ACKNOWLEDGEMENTS
We would like to acknowledge the National Research

Foundation (NRF), the South African Radio Astronomy
Observatory and the SKA Observatory for their support in
carrying out this work under the Bridging Program and the
SKA SAFe program.

REFERENCES
[1] J. Heather, The New Stack, Cloud Native Observability for

DevOps Teams. Alex Williams, 2021.
[2] C. Sridharan, Distributed Systems Observability: A Guide to

Building Robust Systems. O’Reilly Media, Inc., 2018.
[3] M. Bartolini, L. Brederode, M. Deegan, M. Micco-

lis, N. Rees and J. Santander-Vela, “Scaling Agile for
the Square Kilometre Array”, in Proc. ICALEPCS’19,
(New York, NY, USA), ser. International Conference
on Accelerator and Large Experimental Physics Control
Systems, https://doi.org/10.18429/JACoW-ICALEPCS2019-
WEPHA011, JACoW Publishing, Geneva, Switzerland, Aug.
2020, pp. 1079–1083, isbn: 978-3-95450-209-7. doi: 10.
18429 / JACoW - ICALEPCS2019 - WEPHA011. https : / /
jacow.org/icalepcs2019/papers/wepha011.pdf

[4] W. Findeisen, “Hierarchical control structures”, Control and
Cybernetics, 2000.

[5] P. Dewdney, “SKA1 design baseline description”, Rep. SKA-
TEL-SKO-0001075, Internal SKA document, 2000.

[6] SKA log message format, https : / / developer .
skatelescope . org / en / latest / tools / logging -
format.html

[7] SKA logging, https : / / developer . skao . int /
projects/ska-ser-logging/en/latest/?badge=
latest

[8] SKA unique identifiers, https : / / developer .
skatelescope.org/projects/ska-ser-skuid/en/
latest/?badge=latest

[9] SKA transaction logging, https://developer.skao.
int / projects / ska - ser - log - transactions / en /
latest/?badge=latest

[10] Multi level device in tango example, https://gitlab.
com/ska-telescope/ska-tango-examples/-/merge_
requests/28

[11] Why distributed tracing will replace (most) logging, https:
//www.youtube.com/watch?v=Hv98hU3nj0U

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUBL02

TUBL02C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

316 Software Technology Evolution

