18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-TUBLO1

DISTRIBUTED CACHING AT CLOUD SCALE WITH APACHE IGNITE
FOR THE C2MON FRAMEWORK

T. Oliveira*, D. Martin Anido, M. Braeger, B. Copy, S Halastra, A. Papageorgiou Koufidis
CERN, Geneva, Switzerland

Abstract

The CERN Control and Monitoring platform
(C2MON) [1] is an open-source platform for indus-
trial controls data acquisition, monitoring, control and
data publishing. Its high availability, fault tolerance and
redundancy make it a perfect fit to handle the complex and
critical systems present at CERN. C2MON must cope with
the ever-increasing flows of data produced by the CERN
technical infrastructure, such as cooling and ventilation or
electrical distribution alarms, while maintaining integrity
and availability. Distributed caching [2] is a common
technique to dramatically increase the availability and fault
tolerance of redundant systems. For C2MON we have
replaced the existing legacy Terracotta [3] caching frame-
work with Apache Ignite [4]. Ignite is an enterprise grade,
distributed caching platform, with advanced cloud-native
capabilities. It enables C2MON to handle high volumes of
data with full transaction [5] support and makes C2MON
ready to run in the cloud. This article first explains the
challenges we met when integrating Apache Ignite into the
C2MON framework, and then demonstrates how Ignite
enhances the capabilities of a monitor and control system in
an industrial controls environment.

INTRODUCTION TO C2MON

C2MON is an open-source monitoring platform devel-
oped at CERN. C2MON acts as the backbone of the Tech-
nical Infrastructure Monitoring system (TIM) that is used
to monitor and control CERN’s technical services from the
CERN Control Centre (CCC) [6]. The main function of TIM
is to provide reliable and real-time data to CCC operators
about the state of CERN’s widely distributed technical in-
frastructure. To handle such a large volume of information
while maintaining data integrity, C2MON uses Java Mes-
sage Service (JMS) [7] technologies together with caching
technologies. Caching involves storing information in a sep-
arate low-latency data-structure for a period of time to be
reused and consequently minimizing the cost of re-accessing
it [2]. The existing C2MON caching layer relied on a legacy
Terracotta Ehcache framework [3]. Ehcache is a widely-
used Java-based cache that is fast, lightweight and can be
scalable through the use of a Terracotta Server that provides
distributed caching capabilities [3].

C2MON uses a 3-tier architecture, as presented in Fig. 1,
that composes a Data Acquisition (DAQ) Layer, the Server
Layer and a Client Layer. The DAQ layer is responsible for
acquiring data from specific sources and publishing it to
the C2MON server tier. The Client layer provides various

* tiago.marques.oliveira@cern.ch

Software Technology Evolution

o

C2MON SERVER

DAQ API

Figure 1: C2MON Architectural Overview.

service classes that allow to interact with the server. The
Server layer, which is the core part of C2MON, is responsible
for receiving and handling the data.

Most of the information in C2MON is stored and used in
the form of Tag which changes frequently as new data from
the DAQ is received and evaluated by the system. In order to
evaluate the correct and normal values of each Tag, C2MON
provides an Alarm mechanism. The Alarm is a declaration
associated with a Tag and contains a condition specifying the
legal values of that Tag. If the new value received is outside
the legal value range, the Alarm is activated and pushed to
the client. Finally, the C2MON server layer also provides a
rule engine with a set of operations, that allows expressing
complex computations, comparisons and conditions.

INTRODUCTION TO APACHE IGNITE

“Apache Ignite is an open-source memory-centric dis-
tributed database, caching and computing platform” [4].

Ignite provides a simple interface to work with large data
sets in real time. It is written in pure Java, based on Spring
and supports different technologies like Java, C# and C++.
The main capabilities that Apache Ignite provides are

* Elasticity: The Ignite cluster can grow horizontally
simply by adding new nodes over a TCP connection.

* Persistence: Cache entries can be persisted on a file
system or in an RDBMS (Relational Database Manage-
ment System).

* Distributed computing: Apache Ignite provides a set of
APIs that facilitate the distribution of computation and
data processing across the nodes in the cluster for better
performance; it simplifies greatly the development of a
microservice-based architecture.

» Streaming: Ignite allows the processing of continuous
streams of data (which C2MON uses to receive cache
events asynchronously through continuous queries).

Ignite includes the notion of client and server nodes, where
a node is a single Ignite instance running in a JVM (Java
Virtual Machine). In a client server architecture both client
and server nodes are interconnected with each other. The
server, which can be constituted by a single node or a group

TUBLO1
307

©= Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©=2d Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

of nodes forming a cluster, handles all the data storing pro-
cesses and computing of data. The client node is usually
embedded with the application code and acts as an interface
to run operations in the cache like inserting or retrieving
data, but can in some cases also participate in computing
tasks [4]. Apache Ignite comprises a memory-centric ar-
chitecture that can be used as an In-memory or distributed
database. This memory-centric storage allows to store data
and indexes both in-memory and in-disk with the same data
structure and enables executing SQL queries in both with
optimal performance.

HOW CACHING WORKS IN C2MON

In such a fast paced environment as the one present at
CERN where it is crucial to maintain the correct function-
ality of critical systems, it is essential to have a reliable
monitoring platform capable of providing high availability
and fault tolerance when dealing with the increasing flows of
data produced by the CERN Technical Infrastructure. In or-
der to achieve those requirements, C2MON relies on caching
technologies. The cache in C2ZMON acts as a working mem-
ory that allows for stored information to be retrieved as fast
as possible. The database is a persistent storage, and serves
as a backup solution, that is responsible for storing long term
data and to populate the cache when necessary.

C2MON uses a classic client/server cache with a dis-
tributed cluster. This caching layer serves as a middleware
that reduces time-consuming operations of fetching data
from the database by storing the objects that are most used.
When the cache starts up, it must be warmed up : cache
loaders in C2MON are responsible for converting the data
loaded from the database to POJOs (Plain Old Java Objects)
and storing them in the cache [8].

The infrastructure of C2MON heavily relies on the use of
ActiveMQ [9] to transport data. ActiveMQ is an open source,
Java Messaging Service (JMS) compliant, message-oriented
middleware supported by the Apache Software Foundation.
The number of messages that are received can reach up to
a few millions per day, and C2MON has to process all of
them in real-time while maintaining data consistency. This
processing involves the evaluation of Tag values, activation
or termination of Alarms, rule calculation and event propaga-
tion. The calculation of rules in C2MON is a very expensive
process that involves many successive calculations and can
even be recursive. As the rate is so fast, some sort of rapid
access memory is necessary to store intermediate values.
Since JMS is only responsible of receiving and passing data
and does not allow the storage of data, a new component
is needed to fulfill this requirement. This logic could also
be implemented directly in the database layer, as CZMON
uses a relational database like Oracle. But this would require
business logic to be implemented outside the C2MON server
core, it would require the use of Oracle-specific Procedural
Language and would lead to a lot of latency when persisting
all the intermediary values. The solution is the use of a

TUBLO1
308

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-TUBLO1

A

C P
Figure 2: CAP theorem.

distributed working memory like Apache Ignite. This helps
to achieve availability and consistency of data.

ADVANTAGES OF APACHE IGNITE

The Apache Ignite architecture is flexible enough to be
used in various architecture patterns and styles. One possi-
ble approach that facilitates local and integration tests is to
run Ignite embedded with the application where the node
runs on the same JVM with the application. In a produc-
tion environment a better approach is to have the Apache
Ignite server nodes in a separate JVM and client nodes that
connect remotely to the servers. The great advantage of
this approach is the increasing flexibility that allows Ignite
servers to be taken down and restarted without harming the
cluster or the correct functioning of the application they sup-
port [10]. Ignite also offers the possibility of using three
approaches of caching topology, where each cache mode is
individually configured for each cache. In C2MON, Apache
Ignite was configured with a replicated caching topology in
order to achieve the highest possible level of performance.
In this approach, cached data is replicated to all members of
the cluster so it is available immediate use without waiting
and is thus providing the fastest read-access of all caching
topologies. The main downside of this approach is that
writing operations are very expensive since updating a repli-
cated cache requires pushing the new version to all cluster
nodes which may limit the scalability with high frequency
of updates [10].

CAP Theorem

There is a widely known idea that needs to be taken into
account when dealing with distributed computing theory,
which is the CAP Theorem introduced by Eric Brewer [11].
This theorem presents the fundamental trade-off between
consistency, availability and partition tolerance. Figure 2
presents the graphical representation of the CAP Theorem
where the three properties represent:

» Consistency that implies that all the nodes in the cluster

have the same data.

* Availability of the system that should always answer
the queries if possible.

* Partition Tolerance meaning that if a break in the com-
munication occurs, the system will continue to work as
expected.

Based on this theorem, Apache Ignite can be classified
as a CP system, meaning that availability is sacrificed for
consistency of data and partition-tolerance, since it is ACID
(Atomicity, Consistency, Isolation, Durability) compliant,

Software Technology Evolution

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

supporting distributed transactions with partitioned toler-
ance [10]. Ignite can also be considered as an AP system,
since it offers two types of transactional modes for cache
operations: atomic or transactional. In atomic mode Ignite
supports multiple atomic operations, successively, where
each DML (Data Manipulation Language) operation will
either succeed or fail without any data being locked, giving
it a high performance. On the other hand, in transactional
mode, the DML operations can be grouped in one transac-
tion and the data will be locked [10]. This second approach
is used by Ignite in C2MON, with CP prioritised, where the
consistency of data is crucial.

DIFFICULTIES AND CHALLENGES
FACED

Having covered the background to this project and giving
an overview of the caching system, the focus now shifts to
the difficulties and challenges faced during the process of
replacing the caching system.

Code Rigidity

One major problem with the design of C2MON was the
rigidity of its caching layer design. Rigidity is the tendency
for software to be difficult to change and where every change
can cause subsequent changes in dependent modules [12].
This was due to the tight coupling of C2MON to the current
caching technology, so the change would involve refactoring
a major part of the current architecture.

Testing

It is crucial to have a good testing environment to ensure
that the software is working as expected, and to detect and
fix any eventual errors or bugs, when dealing with large
and critical systems like C2MON. This should include not
only unit tests to validate individual components but also
integration tests to check the good behavior of those units
interacting together. Integration testing environments should
mimic production as much as possible, so that potential
issues in production can be reproduced and resolved with
certainty. This step becomes even more difficult with the
increasing number of external dependencies like ActiveMQ,
Oracle database and Apache Ignite, in the case of C2ZMON.

Cloud Readiness

Over the past years, CERN has embraced cloud technol-
ogy which presents significant advantages. It allows a more
agile sharing of resources and it simplifies the reusing and
duplication of entire groups of machines for testing purposes.
Cloud-based deployment file systems are also usually tran-
sient and network interfaces are typically allocated on the fly
with a randomly-generated hardware address and attached to
a local, private and non-routable network. Furthermore, the
life cycle of a cloud container hosting an application is linked
directly to its main process, which must consequently be
managed at level of the hosting cloud, as opposed to the host
they are running on [13]. C2MON was initially designed

Software Technology Evolution

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-TUBLO1

winterfaces
C2monCache

AbstractCache [—— lgniteC2monCache

Figure 3: C2MON Cache Abstraction Class Diagram.

around 2009, when cloud technologies were not as ubiqui-
tous as today, and its legacy architecture makes it impossible
to take advantage of all the capabilities of a platform like
Apache Ignite that is considered “’cloud-ready”. An example
of this is the challenge node discovery in a cloud. Nodes in a
cloud that wish to regroup in a cluster must usually employ
broadcast messages, but this is disallowed at CERN for per-
formance and security reasons. As a result, C2ZMON must
rely on a fixed list of IP addresses, severely limiting how fast
it can be deployed and reconfigured over new hardware or a
dynamic cloud environment.

SOLUTIONS

The remainder of the paper will describe the redesign
of the C2MON platform caching layer, and how the design
choices have helped to overcome these aforementioned chal-
lenges and achieve the goal of integrating Apache Ignite into
the C2MON framework.

Code Refactoring

In order to change the caching layer technology of
C2MON, it was necessary to make a big code refactoring
of various modules that were tightly coupled to it. To min-
imize the rigidity of C2MON’s infrastructure, the caching
layer was rebuilt depending completely on abstractions, de-
coupling it from the technology in place. Every depen-
dency in the design should target an interface, or an abstract
class, and never a concrete class that is much more prone to
changes [12]. This approach has the disadvantage of losing
some of the capabilities of Apache Ignite, but has the advan-
tage of making it easier to change the caching technology in
the future (if necessary), without major code changes. Fig-
ure 3 presents a snippet of the class diagram that corresponds
to the new C2MON cache abstraction layer.

The C2monCache interface is the base of the entire
C2MON caching layer, and contains all the necessary meth-
ods that interact with the cache, like inserting elements in
the cache and retrieving them and querying elements in the
cache, that was purposely implemented in a very simple way
so that it could be implemented by any future alternative
caching technology. This interface is implemented by an
abstract class, AbstractCache, that hides the underlying
implementation of the caching technology, and is also re-
sponsible for managing the caching update flow, the cache
loaders and the cache listeners. The cache loaders are used to
warm up the cache on startup and the cache listeners are used

TUBLO1
309

©= Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©=2d Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

Insert object into cache

| Validate object before inserting |

Object is valid

. hV4 .

‘ Insert object into cache ‘ Update Rejected ‘

¢ N

‘ Update Accepted ‘

¥

Send evenis after inseriing

v
-

Figure 4: C2MON Cache Insertion flow.

Object is not valid

to propagate all caching events. The IgniteC2monCache
is the concrete class that contains the Apache Ignite imple-
mentation of C2monCache. Another implementation choice
was the use of Java Generics throughout the whole caching
implementation. Generics allows to abstract over types and
the core idea is to express intent, and mark the respective ob-
jects as being restricted to contain a particular data type [14].
The Cacheable interface is implemented by all objects that
reside in C2MON caches, creating another layer of abstrac-
tion and removing the possibility of run time errors during
execution. Although Apache Ignite supports ACID transac-
tions this might not be present in other caching technologies,
and data consistency must be guaranteed for the good func-
tioning of C2MON. Figure 4 displays an activity diagram of
how the insertion in the cache is processed to respect cache
consistency. When a new object is inserted in the cache it
goes through a validation process first that guarantees that
the object is complete and correct, and it is not older than the
previous update, otherwise the update operation is discarded.
In case the validation passes, the object is successfully in-
serted in the cache and corresponding events are propagated
to any potential cache listeners.

Testing

The lack of a proper testing environment, made it dif-
ficult to fully test the correct integration of C2ZMON with
its various external dependencies. The alternative used to
overcome this problem was the use of Testcontainers [15].
Testcontainers is a Java library that supports JUnit tests and
that can execute those tests against instances of any software
that can run in a Docker container. To use Testcontainers, all
of C2MON components had to be “containerized” for the
Docker container platform. Testcontainers encapsulate the
management of the Docker images and spins up the required
containers during the tests and tears them down once the test
execution is finished. It provides a faster feedback loop for
integration tests, as all the containers start with a clean and
known state which increases the reliability of the tests.

TUBLO1
310

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-TUBLO1

CONCLUSION

The usage of Apache Ignite has proven to be a robust
and capable solution, that enhanced the capabilities of the
C2MON framework. However, some of its capabilities could
not be completely exploited at CERN because of the way
C2MON is deployed. Although the main goal was to change
the caching technology of C2MON and to integrate Apache
Ignite, the opportunity was also taken to sanitize and refactor
the entire caching layer. This was done following the best
practices for software development and testing, employing
newer features like the implementation of generics and the
use of Java streams. Product testability proved to also be
a very important factor that had to be improved to ensure
that C2MON behaved the same way as before the Ignite
integration : Docker technology (through Testcontainers)
proved an effective and simple way to perform extensive,
repeatable integration testing of the C2MON platform.

REFERENCES

[1] M. Braeger et al., “A customizable platform for high-
availability monitoring, control and data distribution at
CERN?”, in Proc. ICALEPCS 2011, Grenoble, France, 2013,
pp. 418-421.
Greg Luck and Brian Oliver, “Java™ Caching API -
The Java Caching API is an API for interacting with
caching systems from Java programs”, Dec. 2013. https:
//download.oracle.com/otn-pub/jcp/jcache-1_0-
fr-spec/JSR107FinalSpecification.pdf
Software AG, “About Terracotta Ehcache”. Apr. 2019. http:
//documentation.softwareag.com/onlinehelp/
Rohan/tc-ehcache_10-3/10-3_About_Ehcache.pdf
Shamim Bhuiyan and Michael Zheludkov, “The Apache Ig-
nite Book - the next phase of the distributed systems”, 2019.
Paul Parkinson, “Java™ Transaction API (JTA) - Version
1.2”, May 2013.
J. Stowisek, A. Suwalska, and T. Riesco, “Technical infras-
tructure monitoring at CERN”, in Proc. EPAC’06, Edinburgh,
Scotland, 2006, paper TUPLS135, pp. 1822-1824.
Richard Monson-Haefel and D. Chappell, “Java™ Message
Service (JMS)”, 2000.
Szymon Halastra, “Refactoring of the CERN in-memory Data
grid”, 2019.
Bruce Snyder, Dejan Bosanac, and Rob Davies, “Introduction
to Apache ActiveMQ”, August 2008.
Shamim Bhuiyan, Michael Zheludkov, and Timur Isachenko,
“High Performance In-Memory Computing with Apache Ig-
nite - building low latency, near real-time application”, 2017.
[11] Seth Gilbert and Nancy A. Lynch, “Perspectives on the CAP
Theorem”.
[12] R.C. Martin, “Design Principles and Design Patterns”, 2000.

[13] B. Copy, M. Braeger, E. Mandilara, F. Ehm, and A. Lossent,
“C2MON Scada Deployment on Cern Cloud Infraestructure”,
2017.

[14] Gilad Bracha “Generics in the Java Programming Language”,
January 2004.

[15] Testcontainers, https://www.testcontainers.org/.

(2]

(3]

(4]
(5]

(6]

(7]
(8]
(9]

[10]

Software Technology Evolution

