
EVOLUTION OF THE CERN BEAM INSTRUMENTATION OFFLINE
ANALYSIS FRAMEWORK (OAF)

A. Samantas, M. Gonzalez-Berges, J-J Gras, S. Zanzottera, CERN, Geneva, Switzerland

Abstract
The CERN accelerators require a large number of

instruments, measuring different beam parameters like
position, losses, current etc. The instruments' associated
electronics and software also produce information about
their status. All these data are stored in a database for later
analysis. The Beam Instrumentation group developed the
Offline Analysis Framework some years ago to regularly
and systematically analyze these data. The framework has
been successfully used for nearly 100 different analyses
that ran regularly by the end of the LHC run 2. Currently
it is being updated for run 3 with modern and efficient
tools to improve its usability and data analysis power. In
particular, the architecture has been reviewed to have a
modular design to facilitate the maintenance and the
future evolution of the tool. A new web based application
is being developed to facilitate the users' access both to
online configuration and to results. This paper will
describe all these evolutions and outline possible lines of
work for further improvements.

INTRODUCTION
Several thousand instruments are installed in the

CERN accelerator complex to measure beam parameters
(e.g. position, losses, intensity, etc). Table 1 gives an
approximate overview of the types of instrument per
accelerator. Each instrument is typically composed of a
monitor that can be inserted in the beam pipe or installed
outside, an analogue/digital electronics system and a
software layer.
The complex itself spans over several kilometres, with

most of the accelerators installed underground. The
regular operation of these instruments is a major
challenge. They need to be available for the run periods
and their performance has to be guaranteed.

Table 1: Approximate Number of Main Types of
Instruments per Type and Accelerator

LHC SPS PS complex Other

Position 1300 300 300 50

Losses 4200 10 50 30

Intensity 20 10 80 10

Profile 40 10 80 30

The Offline Analysis Framework (OAF) [1,2] was
developed some years ago to deal with this challenge.
The instruments produce beam physics data as well as
status information. Both sets of data are used to monitor

the instrument performance and its evolution through
time. Our final aim is to fine tune the instruments’
performance and introduce predictive maintenance on
their mechanics and electronics parts.

CURRENT USAGE
All these instruments measure, regularly or on demand,

the different beam observables. Then, they send these
values, together with relevant status and setting registers,
to the CERN Control Room for the real time operation of
the machines and into a centralized logging database
(NXCALS) [3] for future offline analysis (Fig. 1).

All this logged information contains too much data to
be analysed properly manually. So, in 2013, we decided
to develop the Offline Analysis Framework [1] in order to
regularly monitor the records stored and automatically
produce 3 kinds of reports:

• Status reports that focus on the state of the
instrument and monitor humidity, temperatures,
logging frequency and more, raising alarms
whenever necessary.

• Performance reports will monitor and assess the
quality (accuracy, resolution, stability) via
device comparisons or regular calibration
sequences.

• Aging or long term evolution reports will survey
the evolution of the quality evaluations made in
the daily performance reports.

Most of these analyses can be derived from the raw DB
records via standard data treatment and plotting
functionalities directly supported by OAF. However,
some analyses require ad-hoc computations or specific
plots. To cover these non-standard requirements, OAF
offers the possibility, whenever necessary (i.e. when the
need is not covered by the build-in OAF features), to add
expert python code to this specific analysis that will be

Figure 1: Standard usage workflow.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV042

Data Analytics

THPV042

965

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

executed at the end of the standard OAF process with a
direct and simple access to:

• The extracted raw DB data and all subsequent
data produced by the OAF associated treatments.

• The OAF programmable interface which allows
the expert graphs, tables and alarms produced to
be included in the reports.

ARCHITECTURE REDESIGN
Although stable and capable of running reliably for

years, the original software architecture of OAF had some
flaws that made working with its codebase difficult.
For example, adding new types of analyses to be run on

the collected data was very complex: it required the
original author to write lots of code, and it was not
modular, meaning that no code could be reused from one
analysis to the other. As a result, over the years the source
inflated due to the code duplication, and became very
hard to maintain and develop further.
An additional issue we found was that users did not

find the user interface understandable enough to use it,
and required constant assistance from the original author
to use the system.

Recently, CERN adopted NXCALS as its central
logging database, forcing OAF to adapt to this new
interface. Due to the need to perform this upgrade, we
took the opportunity to review the entire system, and we
decided to perform a nearly complete redesign. The aim
of this redesign was:

• Make OAF modular and maintainable.
• Make OAF easier to use for the end users.
• Make the creation of new analysis types easier.
• Review which of the existing analysis were still

being used, and which ones could be dropped.
• Clean up and simplify the codebase heavily.
• Strongly improve the performance on some of

the analysis.
As a plus, we also agreed that the output of OAF could

be improved by adding more output mediums. From the
original PDF-over-email report (Fig. 2), we decided to
add several others: a web application, a raw data file, and
we plan to add Python notebooks as well, to allow users
to explore the results further (Fig. 3).

One more incentive to the redesign was that the original
OAF has been developed in Python 2. This fact meant
that a full rewrite was not necessary, but large chunks of
the old code could be kept in the new architecture with
minimal or no changes.
During the redesign, we identified several logic units

and split the codebase into meaningful modules, which
were then reconnected over a more explicit API. This
process proved to be very helpful to the codebase
simplification goal we identified earlier.

In between the last step of the analysis and the output,
we also introduced the concept of results storage, a
temporary store for the processed data. This storage was
critical to make our web interface capable of showing the
analysis’ results without having to re-run the analysis
itself from the original logged data. This storage, though,
also represented a challenge, as we wanted to avoid data
duplication with the database as much as possible. We
finally decided to use HDF5 files for storage, due to the
format’s properties and its capability to efficiently store
complex data structures.
Along with the intermediate storage, we also developed

a small utility library to act as an interface between the
raw files and the Python code, called oaf-commons,
which could be shared between the proper OAF pipeline
and the web application without incurring in more code
duplication.
As a result of the redesign the runtime architecture

completely changed. This can be seen in the Figure 4. The
users interact with the system through a web application
that will be described in the next paragraph. For complex
analysis where custom code is needed it will be placed
directly in Gitlab. The OAF engine gets from Gitlab all
the configuration and the custom code. It queries the
logging database and produces results in a distributed file
system. Then, the web application can access these results
and display them.

Figure 3: OAF architecture after the redesign.

Figure 2: Original architecture of OAF.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV042

THPV042C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

966 Data Analytics

OAF WEB APPLICATION
The OAF Web Application (Webapp), is a web based

application in Python using Django Framework for both
visualization of BI data results and analysis configuration.

Visualization of Results
All the HDF5 files that contain the different instrument

analysis results are saved in a specific directory. In the
Webapp, a list of different instrument analysis where we
can browse between results from different dates is
generated. By default one plot is visualized but there is
also the option to visualize two or four plots the same
time (Fig. 5).

There are several alarms, various plot types and
categories. OAF can raise an alarm in the following
instances:

• MISSING: Alarm raised in case of missing
entities.

• NB_REC: Alarm raised when number of records
is not as expected.

• DISCRETE: Alarm raised if values do not
belong to the given list of values.

• MEASURE: Alarm raised if values do not
remain within given range.

• STATUS_BIT: Alarm raised if the state of status
bit register does not correspond to the nominal
state of each bit.

• SWITCH: Alarm is raised each time a value is
changed.

The following plot categories that are already
implemented are:

• Default Plots: Input data used for the analysis
coming from NXCALS.

• Extra Plots: Produce more complex plots and
tables combining default plots or custom ones on
demand.

• Historical Plots: Show evolution of parameters
across different analysis executions.

• Admin Plots: Monitoring and analysis of OAF
itself.

• Info Plots: Summary of alarms and other info.
Each of these categories can produce different types

of plots. These types can be value over time, value over
value, Histogram, Num-box, Tables and many more.

Quite often we need to transform the displayed
results in order to understand better the measurements.
The most common conversion types (statistic
calculations, FFTs, KDE) have been identified and are
made available to the user. Different plot features are
already implemented, providing like this a deeper, more
specific and accurate analysis according to the users’
needs.

An overview of all the alarms that were detected the
last 24h in each of the available instrument analyses is
provided in a table (Fig. 6).

Figure 5: OAF Webapp instrument analysis example.

Figure 4: Runtime architecture.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV042

Data Analytics

THPV042

967

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Analysis Configuration
Apart from the visualization of results in the Webapp

one can define the configuration of the analysis. Until
today the user had to configure excel files without hints
and error control. In the Webapp version we provide a
user friendly interface guiding the user through a wizard.
Configuration is achieved by the modification of

different tables (Fig. 7) that are stored in an internal
database. This allows the configuration of many features
of the framework. The instrumentation experts do not
have to provide any code for a common usage case. The
different table categories are the following:

• Main: General information.
• New Calculations: Declaration of new variables

based on extracted ones.
• Alarm Definition: The criteria for the alarms.
• Extra Plots: Creation of complex plots

combining default ones based on the already
existing variables or the new ones that are
declared in the New Calculations table.

• History: Evolution of parameters over a long
time span.

• Expert Settings: The user can add expert code in
order to include more functionalities than we
already provide.

Different analysis management options are already
available. Through these options the user can deploy the
configurations to the production server, import existing
configurations, compare if there is a difference between
the current modifications and the production server and
finally re-run the analysis. A new user can also create an
analysis for an instrument by initially adding an empty
one or importing an existing one. An overview table with
the current status of all the analyses gives details about
the production state, including inconsistencies between
development and production configuration.

Technologies Involved
The Webapp is running in the local network of CERN

with limited access to the CERN users only with a Single-
Sign-On (SSO). For the development we use Django [4],
an open source web application framework written in
Python. The data analysis code is written in Python using
libraries such as Plotly, NumPy, SciPy, Pandas. Using
Gitlab’s CI/CD tool the Webapp is deployed on Openshift
after every change in the code, once the unit test have
passed.

EXAMPLE USE CASES
We have selected two use cases to illustrate where the

OAF is being used today. A full list would be too long to
be covered in the paper. At the end of the LHC run 2 (end
of 2018) there were nearly 100 use cases running daily.
The ability to measure luminosity on an absolute scale

is essential for CERN’s Large Hadron Collider (LHC)
physics experiments [5]. The dominating contribution to
the final uncertainty of the absolute luminosity calibration
originates from the bunch current normalization. Thus,
one important use case of OAF has been to assess and
monitor our current different measurement performance.
We are systematically cross-checking the measurements
of the four DC BCTs (Beam Current Transformer) and
the two fast BCTs to detect deviations between them. The
calibration of all these instruments is compared with lab
measurements to make sure that the absolute values are
correct.
A second simpler example is the regular surveillance of

the control of the water cooled racks temperatures hosting
our Beam Position measurement electronics to prevent
calibration changes caused by the building temperature
variations (Fig. 8). We have to make sure that the
temperature variations are below 1oC so that the orbit
calculations are not affected.

Figure 7: OAF Webapp configuration wizard.Figure 6: Overview alarm table.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV042

THPV042C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

968 Data Analytics

EVOLUTION
We have several ideas to improve OAF in the short

term. For the whole life cycle of an analysis, it is still
necessary to open different tools. Our goal is to have a
single entry point application that will allow to configure
all the required steps (data logging, data preprocessing,
data queries, analysis configuration, visualization,
export).
We are also looking to have a full Python code base.

Today we still need some Java functions to query the
Spark based Accelerator Logging (NXCALS).
In the medium term, we want to improve and

modernize the analysis capabilities of OAF to be able to
cover new use cases. We are currently surveying the
needs of users in the Beam Instrumentation group.

CONCLUSION
The Offline Analysis Framework was developed some

years ago to systematically analyze beam instrumentation
data. The tool has helped diagnose and solve numerous
issues so far. In the meantime, the technologies it is based
on have evolved and opened new possibilities. This paper

presents a first step towards this direction by introducing
a web-based self-service tool for the users to configure
their analysis and visualize the results. A second future
step will be to focus on the extensions of the analyses
algorithms that can be used within the tool.

ACKNOWLEDGEMENT
We would like to thank our colleagues in the hardware

teams of the Beam Instrumentation group for their input
of new features needed for OAF. We would also like to
thank our colleagues in the Controls Group for providing
the infrastructure that OAF requires to run.

REFERENCES
[1] S. Jackson, C. Roderick, and C. Zamantzas, “A Framework

for Off-line Verification of Beam Instrumentation Systems at
CERN”, in Proc. 14th Int. Conf. on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS'13), San
Francisco, CA, USA, Oct. 2013, paper MOPPC139, pp. 435-
438.

[2] B. Kolad, J-J. Gras, S. Jackson, and S. B. Pedersen, “The
CERN Beam Instrumentation Group Offline Analysis
Framework”, in Proc. 5th Int. Beam Instrumentation Conf.
(IBIC'16), Barcelona, Spain, Sep. 2016, pp. 449-452.
doi:10.18429/JACoW-IBIC2016-TUPG45

[3] J. P. Wozniak and C. Roderick, “NXCALS - Architecture
and Challenges of the Next CERN Accelerator Logging
Service”, presented at the 17th Int. Conf. on Accelerator and
Large Experimental Physics Control Systems
(ICALEPCS'19), New York, NY, USA, Oct. 2019, paper
WEPHA163.

[4] django - The web framework for perfectionists with
deadlines, https://www.djangoproject.com/

[5] G. Anders et al., “LHC bunch current normalisation for the
April-May 2010 luminosity calibration measurements.”,
February ‘11,
https://cds.cern.ch/record/1325370

Figure 8: Temperature evolution envelop (min, max,
median and a box from 1st quartile to 3rd) of the different
sensors located in LHC building SR1.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV042

Data Analytics

THPV042

969

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

