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Abstract
The  CERN  accelerators  require  a  large  number  of

instruments,  measuring  different  beam  parameters  like
position,  losses,  current  etc.  The instruments'  associated
electronics and software also produce information about
their status. All these data are stored in a database for later
analysis. The Beam Instrumentation group developed the
Offline Analysis Framework some years ago to regularly
and systematically analyze these data. The framework has
been successfully used for nearly 100 different analyses
that ran regularly by the end of the LHC run 2. Currently
it is being updated for run 3 with modern and efficient
tools to improve its usability and data analysis power. In
particular,  the architecture  has been reviewed to have a
modular  design  to  facilitate  the  maintenance  and  the
future evolution of the tool. A new web based application
is being developed to facilitate the users' access both to
online  configuration  and  to  results.  This  paper  will
describe all these evolutions and outline possible lines of
work for further improvements.

INTRODUCTION
Several  thousand  instruments  are  installed  in  the

CERN accelerator complex to measure beam parameters
(e.g.  position,  losses,  intensity,  etc).  Table  1 gives  an
approximate  overview  of  the  types  of  instrument  per
accelerator.  Each instrument is typically composed of a
monitor that can be inserted in the beam pipe or installed
outside,  an  analogue/digital  electronics  system  and  a
software layer.
The complex itself spans over several kilometres, with

most  of  the  accelerators  installed  underground.  The
regular  operation  of these  instruments  is  a  major
challenge. They need to be available for the run periods
and their performance has to be guaranteed.

Table 1: Approximate  Number  of  Main  Types  of
Instruments per Type and Accelerator

LHC SPS PS complex Other

Position 1300 300 300 50

Losses 4200 10 50 30

Intensity 20 10 80 10

Profile 40 10 80 30

The  Offline  Analysis  Framework  (OAF)  [1,2] was
developed  some  years  ago  to  deal  with  this  challenge.
The instruments  produce  beam physics  data  as  well  as
status information. Both sets of data are used to monitor

the  instrument  performance  and  its  evolution  through
time.  Our  final  aim  is  to  fine  tune  the  instruments’
performance  and  introduce  predictive  maintenance  on
their mechanics and electronics parts.

CURRENT USAGE
All these instruments measure, regularly or on demand,

the  different  beam  observables.  Then,  they  send  these
values, together with relevant status and setting registers,
to the CERN Control Room for the real time operation of
the  machines  and  into  a  centralized  logging  database
(NXCALS) [3] for future offline analysis (Fig. 1).

All this logged information contains too much data to
be analysed properly manually. So, in 2013, we decided
to develop the Offline Analysis Framework [1] in order to
regularly  monitor the records  stored and  automatically
produce 3 kinds of reports:

• Status  reports  that  focus  on  the  state  of  the
instrument and monitor humidity, temperatures,
logging  frequency  and  more,  raising  alarms
whenever necessary.

• Performance reports will monitor and assess the
quality  (accuracy,  resolution,  stability)  via
device  comparisons  or  regular  calibration
sequences.

• Aging or long term evolution reports will survey
the evolution of the quality evaluations made in
the daily performance reports.

Most of these analyses can be derived from the raw DB
records  via  standard  data  treatment  and  plotting
functionalities  directly  supported  by  OAF.  However,
some  analyses  require  ad-hoc  computations  or  specific
plots.  To  cover  these  non-standard  requirements,  OAF
offers the possibility, whenever necessary (i.e. when the
need is not covered by the build-in OAF features), to add
expert python code to this specific analysis that will  be

Figure 1: Standard usage workflow.
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executed at the end of the standard OAF process with a
direct and simple access to:

• The extracted  raw DB data and all  subsequent
data produced by the OAF associated treatments.

• The OAF programmable interface which allows
the expert graphs, tables and alarms produced to
be included in the reports.

ARCHITECTURE REDESIGN
Although  stable  and  capable  of  running  reliably  for

years, the original software architecture of OAF had some
flaws that made working with its codebase difficult.
For example, adding new types of analyses to be run on

the  collected  data  was  very  complex:  it  required  the
original  author  to  write  lots  of  code,  and  it  was  not
modular, meaning that no code could be reused from one
analysis to the other. As a result, over the years the source
inflated  due  to  the  code  duplication,  and  became  very
hard to maintain and develop further.
An additional  issue  we found was that  users  did  not

find the user  interface  understandable  enough to use it,
and required constant assistance from the original author
to use the system.

Recently,  CERN  adopted  NXCALS  as  its  central
logging  database,  forcing  OAF  to  adapt  to  this  new
interface.  Due to the need to perform this  upgrade,  we
took the opportunity to review the entire system, and we
decided to perform a nearly complete redesign. The aim
of this redesign was:

• Make OAF modular and maintainable.
• Make OAF easier to use for the end users.
• Make the creation of new analysis types easier.
• Review which of the existing analysis were still

being used, and which ones could be dropped.
• Clean up and simplify the codebase heavily.
• Strongly improve  the  performance  on some of

the analysis.
As a plus, we also agreed that the output of OAF could

be improved by adding more output mediums. From the
original  PDF-over-email  report  (Fig.  2),  we  decided  to
add several others: a web application, a raw data file, and
we plan to add Python notebooks as well, to allow users
to explore the results further (Fig. 3).

One more incentive to the redesign was that the original
OAF has  been  developed  in Python 2.  This fact  meant
that a full rewrite was not necessary, but large chunks of
the old code could be kept in the new architecture with
minimal or no changes.
During the redesign,  we identified several  logic units

and split  the  codebase  into  meaningful  modules,  which
were  then  reconnected  over  a  more  explicit  API.  This
process  proved  to  be  very  helpful  to  the  codebase
simplification goal we identified earlier. 

In between the last step of the analysis and the output,
we  also  introduced  the  concept  of  results  storage,  a
temporary store for the processed data. This storage was
critical to make our web interface capable of showing the
analysis’  results  without  having  to  re-run  the  analysis
itself from the original logged data. This storage, though,
also represented a challenge, as we wanted to avoid data
duplication  with  the database as  much as  possible.  We
finally decided to use HDF5 files for storage, due to the
format’s properties and its capability to efficiently store
complex data structures. 
Along with the intermediate storage, we also developed

a small utility library to act as an interface between the
raw  files  and  the  Python  code,  called  oaf-commons,
which could be shared between the proper OAF pipeline
and the web application without incurring in more code
duplication.
As  a  result  of  the  redesign  the  runtime  architecture

completely changed. This can be seen in the Figure 4. The
users interact with the system through a web application
that will be described in the next paragraph. For complex
analysis where custom code is needed it  will  be placed
directly in Gitlab. The OAF engine gets from Gitlab all
the  configuration  and  the   custom code.  It  queries  the
logging database and produces results in a distributed file
system. Then, the web application can access these results
and display them.

Figure 3: OAF architecture after the redesign.

Figure 2: Original architecture of OAF.
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OAF WEB APPLICATION
The OAF Web Application (Webapp), is a web based

application in Python using Django Framework for both
visualization of BI data results and analysis configuration.

Visualization of Results
All the HDF5 files that contain the different instrument

analysis results are saved in a specific directory.  In the
Webapp, a list of different instrument analysis where we
can  browse  between  results  from  different  dates  is
generated.  By default one plot is visualized but there is
also the option to  visualize  two or  four  plots  the same
time (Fig. 5).

There  are  several  alarms,  various  plot  types  and
categories.  OAF  can  raise  an  alarm  in  the  following
instances:

• MISSING:  Alarm  raised  in  case  of  missing
entities.

• NB_REC: Alarm raised when number of records
is not as expected.

• DISCRETE:  Alarm  raised  if  values  do  not
belong to the given list of values.

• MEASURE:  Alarm  raised  if  values  do  not
remain within given range.

• STATUS_BIT: Alarm raised if the state of status
bit register does not correspond to the nominal
state of each bit.

• SWITCH: Alarm is raised each time a value is
changed.

The  following  plot  categories  that  are  already
implemented are:

• Default  Plots:  Input  data  used  for  the  analysis
coming from NXCALS.

• Extra  Plots:  Produce  more  complex  plots  and
tables combining default plots or custom ones on
demand.

• Historical  Plots:  Show evolution  of  parameters
across different analysis executions.

• Admin Plots:  Monitoring and analysis  of  OAF
itself.

• Info Plots: Summary of alarms and other info.
Each of these categories can produce different types

of plots. These types can be value over time, value over
value, Histogram, Num-box, Tables and many more.

Quite  often  we  need  to  transform  the  displayed
results  in  order  to  understand  better  the  measurements.
The  most  common  conversion  types  (statistic
calculations,  FFTs,  KDE) have  been  identified  and  are
made  available  to  the  user.  Different  plot  features  are
already implemented, providing like this a deeper, more
specific  and  accurate  analysis  according  to  the  users’
needs.

An overview of all the alarms that were detected the
last  24h in each  of the available  instrument  analyses  is
provided in a table (Fig. 6).

Figure 5: OAF Webapp instrument analysis example.

Figure 4: Runtime architecture.
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Analysis Configuration
Apart from the visualization of results in the Webapp

one  can  define  the  configuration  of  the  analysis.  Until
today the user had to configure excel files without hints
and error  control.  In the Webapp version we provide a
user friendly interface guiding the user through a wizard.
Configuration  is  achieved  by  the  modification  of

different  tables  (Fig.  7)  that  are  stored  in  an  internal
database. This allows the configuration of many features
of  the  framework.  The  instrumentation  experts  do  not
have to provide any code for a common usage case. The
different table categories are the following:

• Main: General information.
• New Calculations: Declaration of new variables

based on extracted ones.
• Alarm Definition: The criteria for the alarms.
• Extra  Plots:  Creation  of  complex  plots

combining  default  ones  based  on  the  already
existing  variables  or  the  new  ones  that  are
declared in the New Calculations table.

• History:  Evolution  of  parameters  over  a  long
time span.

• Expert Settings: The user can add expert code in
order  to  include  more  functionalities  than  we
already provide.

Different  analysis  management  options  are  already
available. Through these options the user can deploy the
configurations  to  the  production  server,  import  existing
configurations, compare if there is a difference between
the current  modifications and the production server  and
finally re-run the analysis. A new user can also create  an
analysis  for  an instrument  by initially adding an empty
one or importing an existing one. An overview table with
the current  status of all the analyses gives details about
the  production  state,  including  inconsistencies  between
development and production configuration.

Technologies Involved
The Webapp is running in the local network of CERN

with limited access to the CERN users only with a Single-
Sign-On (SSO). For the development we use Django [4],
an  open  source  web  application  framework  written  in
Python. The data analysis code is written in Python using
libraries  such  as  Plotly,  NumPy,  SciPy,  Pandas.  Using
Gitlab’s CI/CD tool the Webapp is deployed on Openshift
after  every  change in  the code,  once  the unit  test  have
passed.

EXAMPLE USE CASES
We have selected two use cases to illustrate where the

OAF is being used today. A full list would be too long to
be covered in the paper. At the end of the LHC run 2 (end
of 2018) there were nearly 100 use cases running daily.
The ability to measure luminosity on an absolute scale

is  essential  for  CERN’s  Large  Hadron  Collider  (LHC)
physics experiments [5]. The dominating contribution to
the final uncertainty of the absolute luminosity calibration
originates  from  the  bunch  current  normalization.  Thus,
one important  use case of OAF has been to assess and
monitor our current different measurement performance.
We are systematically cross-checking the measurements
of the four  DC BCTs (Beam Current  Transformer)  and
the two fast BCTs to detect deviations between them. The
calibration of all these instruments  is compared with lab
measurements to make sure that the absolute values are
correct.
A second simpler example is the regular surveillance of

the control of the water cooled racks temperatures hosting
our  Beam  Position  measurement  electronics  to  prevent
calibration  changes  caused  by  the  building  temperature
variations  (Fig.  8).  We  have  to  make  sure  that  the
temperature  variations  are  below  1oC so  that  the  orbit
calculations are not affected.

Figure 7: OAF Webapp configuration wizard.Figure 6: Overview alarm table.
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EVOLUTION
We have  several  ideas  to  improve  OAF in  the  short

term.  For the whole life  cycle  of  an analysis,  it  is  still
necessary to open different  tools. Our goal is to have a
single entry point application that will allow to configure
all  the required  steps (data  logging,  data  preprocessing,
data  queries,  analysis  configuration,  visualization,
export). 
We are also looking to have a full Python code base.

Today  we  still  need  some  Java  functions  to  query  the
Spark based Accelerator Logging (NXCALS).
In  the  medium  term,  we  want  to  improve  and

modernize the analysis capabilities of OAF to be able to
cover  new  use  cases.  We  are  currently surveying  the
needs of users in the Beam Instrumentation group.  

CONCLUSION
The Offline Analysis Framework was developed some

years ago to systematically analyze beam instrumentation
data.  The tool has helped diagnose and solve numerous
issues so far. In the meantime, the technologies it is based
on have evolved and opened new possibilities. This paper

presents a first step towards this direction by introducing
a web-based self-service  tool  for  the users  to configure
their analysis  and visualize  the results.  A second future
step will  be to  focus on the extensions  of the analyses
algorithms that can be used within the tool.
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Figure  8:  Temperature  evolution  envelop  (min,  max,
median and a box from 1st quartile to 3rd) of the different
sensors located  in LHC building SR1.
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