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Abstract
The European Organization for Nuclear Research (CERN)

cryogenic infrastructure is composed of many equipment,
among them there are the cryogenic valves widely used in
the Large Hadron Collider (LHC) cryogenic facility. At
present time, diagnostic solutions that can be integrated
into the process control systems, capable to identify leak
failures in valves bellows, are not available. The authors
goal has been the development of a system that allows the
detection of helium leaking valves during normal operation
using available data extracted from the control system. The
design constraints (inaccessibility to the plants, variety of
valve models used) has driven the development towards a
solution integrated in the monitoring systems in use, not
requiring manual interventions. The methodology presented
in this article is based on the extraction of distinctive features
(analyzing the data in time and frequency domain) which are
exploited in the next phase of machine learning. The aim is
to identify a list of candidate valves with a high probability
of helium leakage. The proposed methodology, which is
at very early stage now, with the evolution of the data set
and the iterative approach for the test phase presented in the
last paragraph, is aiming toward a cryogenic valves targeted
maintenance in the LHC cryogenic accelerator system.

INTRODUCTION
The maintenance purpose is to reduce, as far as possi-

ble, the occurrence of undesirable events and, consequently,
the corrective maintenance interventions. The maintenance
campaign of large accelerator systems, such as the LHC at
CERN, represents an important factor in terms of financial
and manpower resources. At CERN, a large fraction of the
cryogenic installation and its control systems are located
in areas inaccessible during physic run campaigns. Due to
the high complexity of the accelerator, the cryogenic system
needs high levels of reliability for its operations. [1]. The
cryogenic valves are widely used in the LHC cryogenic fa-
cility. The design constraints, such as the inaccessibility to
the plants and the variety of valve models used, have driven
the development of an integrated solution in the monitoring
systems in use, not requiring manual interventions. The
authors motivation has been the development of a system
that allows the detection of helium leakage during valves op-
erations using available data. In the past, several diagnostic
approaches have been developed concerning compressors,
electrical motors and cryogenic instrumentation [2, 3]. In
literature, diagnostic solutions that can be integrated into
the process control systems using only the available data,
to identify leak failures in valves bellows, are not available

at this time. Although the solution proposed in [4] based
on Support Vector Machine (SVM) reaches a very interest-
ing level of accuracy (97 %), it unfortunately requires the
use of vibration sensors making this method inapplicable
in contexts where the valves are numerous and difficult to
access. The state-of-the-art solutions for failure prediction
in control valves, cannot fit the context whose constraints
are described.

PROBLEM OF CRYOGENIC VALVE
BELLOWS LEAKAGE

The helium used in cryogenic systems can, due to its phys-
ical characteristic, escape through micro-cracks originated
from valve bellows movements after years of operations.
The main purpose of the presented work is the development
of an innovative tool for maintenance diagnostic. The de-
scribed algorithm produces a list of designated valves that
could potentially present the helium leakage problem. The
selected valves are investigated, by cryogenic operators, us-
ing local helium sniffing devices and if the leak is validated,
a mechanical repair action is undertaken. The cryogenic
system uses several valve models for the regulation and the
control of cryogenic liquefied gases, being able to be fully
functional both at temperatures as low as 1.9 K and at vari-
ous pressures required by the cryogenic process. The system
presented below is focused on these control valves of the
cryogenic types (see Fig. 1) fabricated in stainless steel (AISI
316L). The control valve model used at CERN is driven by
a Siemens Sipart PS2® positioner which gets a setpoint
by the industrial Profibus® PA or by a 4-20 mA current
signal (supporting HART® protocol). The control valve
has a chamber divided into two parts by a diaphragm.

Figure 1: Example of LHC Cryogenic control valve [5].
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The desired state of the valve is achieved by varying the
air pressure in the two areas of the chamber. The pressure
difference moves the diaphragm, and the stem tuning the
valve opening. The valves are sealed to air using metallic
bellows forming a cylinder shape junction between the fixed
and movable part of the valve. The bellows shape is designed
in order to be flexible and to follow the stem actions. The
authors have analyzed a subset of 174 out of the 1357 control
valves.

PRIOR KNOWLEDGE MODEL
The valve failures, causing helium leakage, are mainly

related to the metallic bellows fatigue due to the workloads
within the tens of thousands of elongations cycles [6].The
study turns into a binary classification problem in which the
fatigue phenomena is used to identify if the valve is close to a
failure caused by stress. The fatigue phenomena is described
using the Wöhler diagram (see Fig. 2). It represents the
number of cycles at which a breakage is expected to happen.
According the diagram, the relationship between stress 𝜎
and critical number of the cycles 𝑁 is:

𝜎𝑀 ⋅ 𝑁 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (1)

where 𝑀 is a constant.

Figure 2: 𝜎 − 𝑁 diagram of stainless-steel bellows [7].

During normal operation, the mechanical effort on the com-
ponent is characterized by different values of stress intensity.
To combine them and estimate the general cumulative dam-
age of the material, Palmgren-Miner’s rule is used [8].

∑𝑖
𝑛𝑖𝑁𝑖 = 𝑑𝑎𝑚𝑎𝑔𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 (2)

where 𝑛𝑖 and 𝑁𝑖 are the number of performed and the critical
cycles of the 𝑖−𝑡ℎ value of stress applied to the bellows. The
damage condition parameter indicates an estimation of the
cumulative damage and is used to compare the health status
of the valves. Values under the unit mean that the fatigue
limit is not reached.

DATA COLLECTION
The history of the valves position is extracted from the

logging files, and the parameters reported in the Table 1 were
gathered for each valve. The dataset is built from log files us-
ing a Python® script and the CERN/TIMBER® application
querying of the CERN Accelerator Logging Service. The
extracted information were then organized as a vector for
each valve. The history covers the interval of time between
2008 and 2019.

Table 1: SIPART PS2 Positioner® Parameters

STRKS Number of complete strokes from 0% up to
100% and back

CHDIR Number of times a change of direction has oc-
curred

HOURS Number of hours worked since initialization
SSUP It defines the upward variation within which the

valve in the Slow Step zone is operated. In this
condition, the actuators are piloted by a PWM
signal to avoid overshoots.

SSDN Similarly to the SSUP parameter but with regard
to the downward movements.

After having studied the problem from a physical point
of view and collected the data, the authors have divided the
procedure into two main steps:i) Pre-processing phase where
distinctive features are extracted by considering breaking
phenomena; ii) Machine Learning (ML) model training, for
the classification of broken valves. While the leak problem
is tackled, the reliability of the ML model obtained will
improve because of the growing number of broken valves
dataset.

Figure 3: Representation of algorithm approach develop-
ment.

PRE-PROCESSING FOR FEATURES
EXTRACTION

Starting from the vector of the valve position over time,
two features were extracted to be used in the subsequent ML
model training. The extraction of these two features takes
place in the two phases explained below:
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Time Domain
This phase aims to identify which valve bellows had

the most stressful regulation due to the widest elongation
and compression. Considering the bellows as a spring, the
Hook’s law can be used to find a relation between the ampli-
tude and the force applied to compress or stretch the bellows
(and indeed stress):

𝜎 = −𝑘 ⋅ Δ𝐿𝑆 ⇒ 𝑁 ∝ 1/Δ𝐿𝑀 (3)

where 𝑘 is the elastic constant of the material, Δ𝐿 is the ex-
cursion performed by the bellows and 𝑆 is its section area. In
according to fatigue theory, larger movements of the valves
(opening or closing) drastically reduce the lifetime of the bel-
lows. The evaluation of the correct amplitude is mandatory
because of the exponential relationship between the criti-
cal number of cycles and the amplitude of the movement.
The series of movements are filtered and then processed
with logical operations to obtain the extremes mono direc-
tional variation. This operations not only allow to reduce
the vector size by discarding all the value between two ex-
tremes, but they also reduce the computational effort for all
the subsequent operations. The little changes in directions
are removed using the local Gaussian smoothing. At the
end, only the extremes of the wide variations are extracted.
The purpose is to build a matrix from the dataset in order
to have a synthetic representation of the movement history.
The Stochastic matrix is a square matrix in which the rows
and the columns represent respectively the initial and the
final position of the movement. The matrix is filled with the
number of movements relative to the row-column pair. A
mask matrix is then adopted in order to assign a weight to the
excursions according to the change of position importance
(more or less burdensome). According to Palmgren-Miner’s
rule, the mask coefficients are the reverse of the maximum
number of expected cycles and are obtained by the Wohler di-
agram of stainless steel bellows. At CERN, the information
from broken valve dataset is extracted in order to improve the
analysis with experimental data. The dataset of broken bel-
lows valve and healthy valve are considered, and a stochastic
matrix is extracted and calculated for each of them. All the
stochastic matrixes are weighted with the coefficient of the
mask and are clustered using an unsupervised classifier (ML
technique in which the users do not need to intervene manu-
ally to label the dataset model) to identify for each coefficient
of the matrix a centroid of the broken valve set. All these
centroids are collected in a matrix and each value is divided
by the mean value of stochastic matrix of the broken valve
dataset. The unsupervised classifier used is 𝐾 − 𝑚𝑒𝑎𝑛𝑠. The
outcoming matrix is used as weights matrix for the analysis
of each new checked valve. A final output parameter is ex-
tracted for each valve to test. The parameter is the sum of
all the coefficients of the matrix obtained by multiplying the
coefficient of the stochastic matrix and the second weight
matrix. This parameter, according to previous formulas, is
proportional to the estimation of the accumulated bellows
damage.

Frequency Domain
The second phase is based on spectral analysis performed

to evaluate the dynamic of the movements. The time series
data extracted from log file are non-uniform sampled. Be-
fore passing to the frequency domain, an interpolation must
be performed. The interpolation must fill the missing values
discarded during the the storing in log files (due to avoiding
the replication of similar values in log files). Considering a
common time base for all valves, a previous neighbor inter-
polation to replicate the non-sampled values is performed.
Other interpolation approaches are avoided in order to do not
alter the original values. The spectral analysis is performed
by calculating the energy of the envelope of the module of
the Fast Fourier Transform (FFT) of valve trace movements.
The extracted feature is the ratio between the energy of the
last quarter of the frequency spectrum and the total energy.

MACHINE LEARNING PERFORMANCE
MEASURES

To assess the quality of the classification model, differ-
ent performance indices were considered. The accuracy
index (explained below), when the size of the minor class
represents only a small percentage of the data set size, is
not suitable because the minority class has very little influ-
ence on accuracy. The results of binary classification can
be defined in four different values: true positive (TP), true
negative (TN), false positive (FP) and false negative (FN).

Table 2: Confusion Matrix for Binary Classification

Predicted class
Positive Negative

True Class Positive TP FN
Negative FP TN

By these values the confusion matrix was built as shown in
Table 2. Different quality indexes can be calculated:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) ∶= 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃 = 𝑇𝑃 + 𝑇𝑁𝑃 + 𝑁
𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅𝐸𝐶) ∶= 𝑇𝑃𝑟𝑎𝑡𝑒 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 = 𝑇𝑃𝑃

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑅𝐸𝐶) ∶= 𝑇𝑃𝑇𝑃 + 𝐹𝑃
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑅𝑃) ∶= 𝐹𝑃𝑇𝑁 + 𝐹𝑃

where 𝑃 refers to the total number of broken valves and 𝑁
refers to the total number of healthy valves.
The TPR and the PRECISION values are summarized in the
F-score parameter defined as:

𝐹 = 2 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑇𝑃𝑅𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑇𝑃𝑅
These indices are useful to give a measure of performance
and to make comparison between the models.
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EXPERIMENTAL RESULTS
In the processing phase, different binary classification

models were explored [9]. The choice of the model is driven
by the performance indices explained in the section ”Ma-
chine Learning Performance measures”. The input dataset
is composed of the observations collected for each valve,
whose features are the elements in Table 1 and the time and
frequency domain features extracted as described above. In
the first experiment 174 valves, of which 8 were broken,
were used as input data (training set), . The choice of the
valves is driven by the similar mechanical characteristics, in
order to make them comparable using Wöhler diagram. Due
to the small dataset, the K-fold cross-validation is chosen
with k=8 to have at least 1 broken valve for each validation
subset. To train the model, only the predictors with low
correlation are chosen. The selected predictors were the
two features extracted in pre-processing step, CHDIR and
STRKS. The model was trained with these features obtain-
ing as best result, in terms of accuracy, the “Gaussian SVM”
with an accuracy of 96.6 %. The broken valves recognized
were two out of eight, with a TPR of 25.0 %. Even though
Kernel Naïve Bayes model has an accuracy lower and equal
to 94.8 %, it had a TPR for the broken class of 75.0 % iden-
tifying six out of eight broken valves. The F-score is equal
to 57.1 %. Good results were obtained although the dataset
is highly unbalanced with a TNR of 95.8 % and a TPR of
75.0 %. Different techniques were analyzed to overcome the
disproportion between the positive and negative class [10].

Cost-sensitive Learning Technique
Two different costs for the wrong classification are as-

signed. The aim is to penalize the wrong classification of
positives samples more than the wrong classification of neg-
atives samples, hence a higher cost to FN is applied [11].
The CFN denotes the cost of predicting negative instead of

Table 3: Misclassification Costs Matrix

Predicted class
Positive Negative

True Class Positive 0 CFN
Negative CFP 0

positive, and CFP the cost of predicting positive instead of
negative. To move the attention of the model to the broken
valves, a script was written to maximize the F-score varying
the CostRatio and, at the same time, minimize the cost func-
tion [12]. Different models achieved good results as shown
in Table 4. In this case, the best solution is the Quadratic
Discriminant model, which accomplished a TPR=87.5 %
recognizing 7 out of 8 broken valves and a TNR=95.8 %.

Resampling Techniques
Operating before the training, a dataset already balanced

in the classes has been provided to the Classification Learner
App®. There are two different techniques :

Table 4: TPR and TNR with a different CostRatio [9].

• “Undersampling” which purpose is the reduction of the
samples in the majority class to balance the data. The
technique was not performed due to the small number
of samples in the minority class.

• “Oversampling” which purpose is the increment of
the samples of the minority class to balance the data.
This result can be achieved either randomly or with
synthetic data. These techniques can be then adopted,
but overfitting risk need to be handled.

Synthetic data are added to the dataset by means of the
following oversampling techniques:

• Synthetic Minority Over-sampling Technique
(SMOTE): New synthetic samples are obtained by
selecting randomly one of the 𝐾 − 𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
of a sample casually picked from the minority class.
Then, through a random number 𝛿 ∈ [0, 1], the point
is placed along the line between the selected minority
class sample and the nearest neighbor chosen [10]:

𝑋𝑆𝑀𝑂𝑇𝐸𝑗 = 𝑥𝑖( ̃𝑥𝐾𝑛𝑛𝑖,𝑘 − 𝑥𝑖) ∗ 𝛿𝑗 (4)

where 𝛿 ∈ [0, 1] is a random number.
In this case study, an oversampling of 8 broken valves

Figure 4: Synthetic data SMOTE.
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was processed, in order to prevent the model from be-
ing performed only on the synthetic data, leading to
a completely distorted model. Factor K=3 and a 16-
cross validation are chosen obtaining as best result the
“Quadratic Discriminant” with an accuracy of 95.1 %
with the confusion matrix in Table 5.

Table 5: SMOTE Confusion Matrix

Predicted class
Positive Negative

True Class Positive 14 2
Negative 7 159

Cross-validation and Overfitting
If the oversampling of the minority class is done before

cross-validation, the oversampling can lead to overfitting.
Because in the Smote algorithm 𝛿𝑖 could be equal to 0 or
equal to 1, if the oversampling is applied before the cross-
validation, one or more samples could be equal to the original
dataset points [13]. In Fig. 5 the same minority samples (in
blue) are in both validation and training set. The overfit-

Figure 5: Oversampling and Cross-validation.

ting can be avoided if in each iteration: i) dataset is divided
into validation and training set, then ii) SMOTE algorithm
is applied only to the training dataset and iii) performance
measures are evaluated with the validation set [13] as shown
in the Fig. 6. Applying this structure, there has been a degra-
dation in the performances of the SMOTE algorithm with a
TPR=75.0 % recognizing 6 out of 8 broken valves.

ITERATIVE APPROACH FOR THE TEST
PHASE

Since this is a novel study of the helium leakage of the
cryogenic valves, the test phase is conducted by applying
the ML models introduced by authors, to the valves of a
certain sector of the LHC. The valves are then manually

Figure 6: Cross-validation and Oversampling.

checked for damages. This approach allows to evaluate the
performance of the model and improve it at each step. Due
to the low number of broken valves, one of the first algorithm
attempts, then rejected, presented the problem of overfitting
as the performance in the test phase was much worse than
in the training phase. For this reason, the authors decided
to consider several dataset manipulation techniques and ML
solutions towards the highest level of performance. The
authors are confident that the combination of the increasing
number of broken valves and the iterative approach to the
test phase will lead to a more reliable model for the correct
recognition of broken valves.

CONCLUSION
The authors present in this paper an innovative solution

for fault detection of cryogenic valves bellows installed in
the CERN LHC accelerator. The development was focused
to produce a solution able to be easily applicable to the
data from the existing cryogenic control system. The solu-
tion consists of a pre-processing step in which a features
extraction is performed and a ML phase for the data drive
modelling. The dataset, for the training and validation step,
is composed of recorded data characterized of 174 valves by
different features. Several classifiers were validated and best
performances, exploiting the oversampling of broken valves,
were reached by means of Quadratic Discriminant. The
Quadratic Discriminant model has accomplished good per-
formances both with oversampling and cost-sensitive learn-
ing technique. The presented results were obtained using an
unbalanced dataset of heterogeneous types of bellows-sealed
control valves. The work presented in this manuscript will
constantly evolve when more dataset become available to
improve the training and validation steps and perform the
iterative test step.
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