
REUSABLE REAL-TIME SOFTWARE COMPONENTS FOR THE
SPS LOW LEVEL RF CONTROL SYSTEM

M. Suminski∗, K. Adrianek, B. Bielawski, A. C. Butterworth, J. Egli, G. Hagmann,
P. Kuzmanovic, S. Novel Gonzalez, A. Rey, A. Spierer, CERN, Geneva, Switzerland

Abstract
In 2021 the Super Proton Synchrotron has been recom-

missioned after a complete renovation of its low level RF
system (LLRF). The new system has largely moved to dig-
ital signal processing, implemented as a set of functional
blocks (IP cores) in Field Programmable Gate Arrays (FP-
GAs) with associated software to control them. Some of
these IP cores provide generic functionalities such as timing,
function generation and signal acquisition, and are reused
in several components, with a potential application in other
accelerators.

To take full advantage of the modular approach, IP core
flexibility must be complemented by the software stack. In
this paper we present steps we have taken to reach this goal
from the software point of view, and describe the custom
tools and procedures used to implement the various software
layers.

INTRODUCTION
The new LLRF system for the SPS has largely replaced old

VME-based hardware with a modern installation designed
around microTCA crates using PCI-express as the bus.

The update has brought many benefits, one of them being
higher hardware density: what used to take a VME crate
filled with modules, now is replaced with one or two mi-
croTCA cards. It has also affected the control system, as
component size has shrunk from a card to an IP core.

Previously, each component was implemented as a VME
module, with its own driver, user-space library and appli-
cation. With the new hardware, the said approach was no
longer applicable, therefore a new solution had to be defined.

WORKFLOW
This section will illustrate typical steps needed to develop

reusable firmware and software. Overview of the layers
constituting a component is presented in Fig. 1.

Memory Map
The process begins with hardware interface definition,

starting with individual IP cores and ending with the top
level map containing all components used in a card. The
interface is called memory map since it defines mapping
registers and memories to offsets in a card memory space.
Memory map serves as the primary data source for both
firmware and software developers.

Each register is described by a number of attributes, such
as name, access mode (read-write/read-only), bit width,
∗ maciej.suminski@cern.ch

valid value range or conversion functions between raw reg-
ister value and physical units.

Figure 1: Example of a card implementation with several
components. The white block (C library) is common to all
cards and components. The grey blocks (Linux driver & ad-
dress decoder) are card specific. The remaining colors show
parts of reusable component stacks, each color representing
a different component.

Registers may have subcomponents called fields, provid-
ing a way to give different meaning to a set of bits belonging
to a particular register. This method is frequently used for
status and control registers, where each bit represents a dif-
ferent part of the logic.

Each memory map may also include other memory maps,
allowing the designer to reuse existing ones and establish a
tree-like structure. The latter method is commonly applied
for composing IP cores to define a card interface, also known
as the top level map.

Memory maps are edited using a dedicated tool named
Reksio (former Cheburashka [1]). The tool offers a graphical
user interface aiding the users in memory map creation and
validation. It also provides straightforward access to external
tools, such as generators for various layers of the component
stack.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV033

Timing Systems, Synchronization and Real-Time Applications

THPV033

939

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



Once a memory map is finished, it serves as the source to
generate several layers of the component stack:

• FPGA firmware template
• Linux driver
• C++ library
Generated components will be discussed in detail in the

following sections.

FPGA Firmware Template
The firmware designer begins with executing the Cheby

[2] tool to generate skeleton code in VHDL, creating the
foundation for firmware development. The obtained code
supplies a bus interface used for data transfers and a set of
signals directly representing registers. The latter part is used
by the firmware designer to implement the actual component
logic.

This step may be executed at the component level, result-
ing in self-contained, component-specific code or at the top
level in order to generate an address decoder for a card.

Linux Driver
Another part of the toolset is the Encore Driver Generator

(EDGE) [4], which translates a memory map file to Linux
driver source code.

While in certain cases it would be possible to bypass the
driver by directly accessing memory-mapped device regis-
ters, having a driver brings certain benefits. In a microTCA
module, the driver is needed to enable Direct Memory Ac-
cess (DMA) transfers or handle hardware interrupts.

Apart from driver generation, EDGE also provides a user-
space shared C library to communicate with the hardware.
The library interface allows the software developer to access
any register by its name, using a driver specific memory map
file. Thanks to that, the library is common to all components
and is not included in the component stack.

It is worth mentioning that EDGE supports both PCI/PCI-
express and VME, which is especially convenient when a
component needs to be migrated to a different platform.

Please note that the Linux driver is card specific and does
not belong to any particular component.

C++ Library
The next layer of the software stack is a C++ library, also

generated from a memory map. It uses the EDGE library for
accessing the hardware, and as such requires a driver gener-
ated with the aforementioned tool. While the C++ library
is not strictly required for the application development, it
facilitates the software development process.

First of all, generated C++ libraries provide a user-friendly
interface, where the tree-like hierarchy of a memory map
is reflected in a set of classes, each representing a submap,
register or field. Such an approach allows the developer to
easily traverse the structure by accessing appropriate fields
in the generated classes.

Moreover, the generated library takes advantage of certain
properties defined in the memory map:

• Data type (bit width and signedness): ensures correct
register value interpretation.

• Valid value range: prevents setting registers to values
which are not considered correct.

• Functions to convert between raw register values and
physical units: enables writing application code using
values expressed in physical units without any addi-
tional effort.

Real-Time Application
The last layer of the software stack is the real-time appli-

cation. At CERN, such applications are developed using
the Front-end Software Architecture (FESA [5]) framework
with C++ as the programming language.

Most applications built using FESA consist of two parts:
• Server: used for communication with the user or higher

level applications. It provides a way to specify new
settings or read data acquired from the hardware.

• Real-time: controls the hardware synchronously to the
timing system. This part most often configures the card
for a particular accelerator cycle and reads back data
from the hardware.

Application code might also be generated, but the inter-
face would correspond directly to the memory map. In most
cases, applications are expected to implement a user-friendly
interface and not one that gives a direct access to the hard-
ware. Usually this layer takes most time to implement.

VERSION VALIDATION
It is usual for components to evolve as new requirements

arise. If a change is made to hardware, then it needs to be
propagated through each layer upwards in order to avoid
unexpected behaviour, which is often difficult to analyze.

For this reason it is essential to verify if all layers of a
component are compatible with each other. The simplest way
to achieve that is by assigning each layer a version number.
In the new SPS LLRF system, the numbers are assigned
in accordance with semantic versioning [5] scheme, which
defines clear rules regarding which versions are compatible
with each other.

For hardware, it has been decided that the first registers
in each memory map constitute a standard header providing
firmware and memory map version numbers. This is true
for both top level and component memory maps.

The Linux driver version is expected to match the
firmware version of the card. EDGE offers a way to spec-
ify an automatic version check by specifying a register and
its expected value range. If the register value is outside of
the range, the driver will refuse to load. This step assures
memory map compatibility between software and hardware
domains.

The user-space EDGE library (libedge) executes another
test. When a device is opened, the library reads its driver
version and loads the corresponding memory map file, which
will be used for obtaining register offsets. At this stage the
library also computes the memory map file checksum and

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV033

THPV033C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

940 Timing Systems, Synchronization and Real-Time Applications



compares it with the one stored in the driver. Further access
to the card is possible only when the two numbers match.

Finally, each user-space application is also expected to
validate the hardware version. Normally this is done by com-
paring the component firmware version against the version
supported by the application.

EXAMPLES
During the SPS LLRF upgrade, several common com-

ponents have been developed to be applied in Cavity Con-
trollers and Beam Control microTCA cards:

• Timing generator core: programmable timer generating
pulses with requested delays.

• Acquisition core: generic component for sampling data
inside the FPGA and transferring it to a memory.

• Resampler core: converts acquired data between fixed
sampling rate and beam synchronous rate.

• Function generator core: delivers time series data ac-
cording to a programmed pattern.

• Numerically controlled oscillator core: generates sam-
ples corresponding to a sine wave at the requested fre-
quency, with certain customizations for application in
accelerators.

• Gigabit link core: controller for a gigabit serial link
used for data transfer.

Each of the above components has an implementation in
all the presented layers apart from the Linux driver, which
is card specific. If one of them needs to be instantiated in
another system, the whole stack can be reused.

CONCLUSION

The described workflow has been successfully applied
during the SPS LLRF renovation. The process has deliv-
ered several self-contained components, covering all layers
from hardware to software application. The components
have been reused in two cards without any modification
and are potentially applicable in other systems, including
non-microTCA ones.

The new approach has improved task coordination in the
development process, since several components could be
developed independently and tested with any available hard-
ware.

REFERENCES
[1] P. Plutecki, B. Bielawski, and A. C. Butterworth, “Code

Generation Tools and Editor for Memory Maps”, in Proc.
ICALEPCS’19, New York, NY, USA, Oct. 2019, pp. 493-496.
doi:10.18429/JACoW-ICALEPCS2019-MOPHA115

[2] Cheby, https://gitlab.cern.ch/cohtdrivers/cheby

[3] EDGE Driver Generator, https://gitlab.cern.ch/
cohtdrivers/encore

[4] M. Arruat et al., “Front-End Software Architecture”, in Proc.
ICALEPCS’07, Knoxville, Tennessee, USA, paper WOPA04,
p. 310-312.

[5] Semantic Versioning, https://semver.org

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV033

Timing Systems, Synchronization and Real-Time Applications

THPV033

941

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I


