
NEW TIMING SEQUENCER APPLICATION IN PYTHON WITH Qt
DEVELOPMENT WORKFLOW AND LESSONS LEARNT

Z. Kovari, G. Kruk, CERN, Geneva, Switzerland

Abstract
PyQt is a Python binding for the popular Qt framework

for the development of desktop applications. By using
PyQt one can leverage Qt's aspects to implement modern,
intuitive, and cross-platform applications while benefiting
from Python's flexibility. Recently, we successfully used
PyQt 5 to renovate the Graphical User Interface (GUI)
used to control the CERN accelerator timing system. The
GUI application interfaces with a Java-based service
behind the scenes. In this paper we introduce the generic
architecture used for this project, our development work-
flow as well as the challenges and lessons we learnt from
using Python with Qt. We present our approach to deliver-
ing an operational application with a particular focus on
testing, quality assurance, and continuous integration.

TIMING CONTROL APPLICATION
Accelerator Timing System

CERN continuously delivers particle beams to a range
of physics experiments (end-users), each posing strict,
detailed requirements with respect to the physical charac-
teristics of the particle beam to be delivered. Hence, parti-
cle beams traverse a number of accelerators while being
manipulated in various ways. For this to happen, the ac-
celerators repeatedly “play” pre-defined cycles, which
usually consist of an injection-acceleration-ejection se-
quence. This in turn involves many concurrent beam
manipulations including particle production, bunching,
cooling, steering, acceleration and beam transfer – all of
which must occur at precise moments in time, often with
microsecond or even nanosecond precision. The role of
the Timing system is an orchestration of all these activi-
ties, ensuring that the accelerator complex behaves as
expected as a function of time.

Each accelerator at CERN is associated with a Central
Timing system (CT) which, based on the configuration
provided by the operators and dynamic input such as
external conditions, calculates in real time so-
called General Machine Timing (GMT) events that define
key moments in the accelerator cycles such as beginning
of the cycle, injection, ramp, extraction, etc.

GMT events are then transmitted to Front-End Com-
puters (FECs) via a dedicated cabled network known as
the GMT network.

On the FEC side, the GMT cables are connected to
Central Timing Receiver (CTR) modules, which decode
the received GMT events and allow generation of derived
local events (with optional delay) in the form of software
interrupts and physical pulses for the accelerator hard-
ware.

Timing App Suite
The control of the timing system is done via a dedicated

GUI application that allows operation crews to define a
collection of cycles composing a so-called beam (see
Fig. 1). A Beam is executed by the central timing to trans-
fer and accelerate a particular particle beam from the
source, through the intermediate accelerators, up to the
final experiment. Beams are then used to build a Beam
Coordination Diagram (BCD) that defines sequencing of
different particle beams sent to different destinations as
illustrated in Fig. 2.

Following the renovation of the central timing itself, it
was decided to also renovate the 20-year-old application
used to control it, modernizing its architecture, improving
usability aspects and taking advantage of the new features
provided by the central timing.

Figure 1: Timing Beam editor.

Figure 2: Beam Coordination Diagram editor.

ARCHITECTURE
The application was designed and implemented in a 3-

tier architecture (see Fig. 3): a GUI, implemented in Py-
thon using PyQt toolkit, communicating via HTTP with
RESTful services implemented in Java, and with the Cen-

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV015

THPV015C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

904 User Interfaces and User eXperience (UX)

tral Timing process (C++) via PyJAPC [1] a Python
wrapper over the Controls Middleware (CMW) [2] com-
munication library.

The Java server relies on Spring Boot and several fea-
tures provided by the Spring framework such as REST
controllers or JPA database access, along with dependen-
cy injection and configuration services.

Figure 3: Timing App Suite architecture.

The server is completely stateless allowing simple de-
ployment of two instances with an Nginx [3] proxy server
in front, and enabling rolling updates.

GRAPHICAL USER INTERFACE
The GUI application is split into four different layers:
• Data: Qt independent CERN-related domain classes

representing the Timing ecosystem.
• Model: Qt model layer responsible for mapping Data

to the View [4].
• View: the User Interface widgets [4].
• Controller: optional intermediate layer between

view and model, typically handling signal and slot
connections that need more sophisticated business
logic and cannot be connected directly between the
view and the model.

Model
The model layer in Qt's architecture has two responsi-

bilities. On the one hand, it maps the Data objects to the
View, basically saying which data item should be dis-
played at which index (QModelIndex [5]). On the other
hand, it also tells the View component how that data
should be rendered, e.g., in which font, background color,
and with what tooltip or icon.

View
In most cases, the user interface was designed in Qt's

built-in editor, Qt Designer, which is also easily accessi-
ble through the pyqt5-tools [6] Python package. Qt De-
signer is a simple-to-use editor that allows dragging and
dropping Qt widgets and creating user interfaces without
any programming.

Such created panels are then saved to .ui files, which
are re-used in the Timing Control Python application.
There are two ways to do that:

• Using PyQt's uic module to load the generated UI files
[7].

• Generating Python code from the UI files [8].
The 2nd solution was used, as this approach provides

content assists in the PyCharm IDE, and in general,

helped to better integrate the View components into the
source code (e.g. finding usages throughout the entire
source code).

The drawback of such an approach was that an addi-
tional step was needed between editing the UI in Qt De-
signer and then using it in the application. The pyqt5ac
3rd party library was used for code generation to automat-
ically convert multiple UI files into Python [9].

Communication Between Model and View
The model layer in Qt handles many aspects of what is

displayed, and how, from Data to View. Due to this close
connection, it is also simple to directly handle user inter-
actions between view and model by connecting the neces-
sary signals from the view to the model's slots, and vice-
versa. That being said, an additional controller layer was
introduced to handle some of the more complex signal-
slot connections. This also allowed to further modularize
the application and re-use some of the view, model, or
even controller components in other panels.

Testing
One of the great benefits of using Qt/PyQt was auto-

mated testing. Using the pytest-qt Python library [10],
over 500 test cases were implemented that verify the user
interface. The pytest-qt package provides a qtbot object
that can be used to spawn and interact with the GUI ap-
plication, e.g., clicking buttons, selecting, or even drag-
ging and dropping elements. Behind the scenes, the pack-
age uses Qt's QTest namespace [11] with some additional
features extended (e.g., "stop" method [12]).

TIMING JAVA SERVER
The server side follows the classical pattern with three

layers [Fig4]: (1) the data access layer consisting of JPA
repositories and corresponding entities mapped to the
database tables, (2) the service layer that uses one or more
repositories to perform CRUD operations and does the
translation between entities and Data Transfer Objects
(DTOs), and (3) the REST controllers layer that handles
HTTP requests, relying on services.

Figure 4: Simplified diagram of Timing server compo-
nents.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV015

User Interfaces and User eXperience (UX)

THPV015

905

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

CONTINUOUS INTEGRATION
CERN's self-hosted GitLab instance was used to host

the application's code repository and set up automated
pipelines [13] for continuous quality assurance.

Each time a commit is pushed to the Git repository, a
GitLab pipeline (see Fig. 5) runs and automatically veri-
fies the codebase of that specific commit. Verification
means the following:

• GUI tests run automatically on GitLab. To run UI
tests in a container, Xvfb [14] (a virtual framebuffer
X server that can run on machines with no display)
was configured.

• Static code analyzer tools (such flake8 [15], pylint
[16], and mypy [17]) are used to analyze the correct-
ness of the code. These tools can detect non-standard
code usages that violate PEP-8, or even potential
problems such as missing arguments or missing im-
ports. Based on the development experience, these
tools are easy to set up and do help to elevate code
quality but don't replace frequent code reviews and
testing.

Figure 5: Pipeline to build, test and analyse the code.

CONTINUOUS DEPLOYMENT
On the same GitLab pipelines that verify the code, the

application can also be deployed to different environ-
ments, as illustrated in Fig. 6.

Figure 6: Deployment part of the pipeline.

To track the environments (such as DEV, STAGING,
RC, PROD) the GitLab built-in environments feature is
used [18]. GitLab's environments panel allows to track
which commits are deployed to which environments.
Furthermore, a deployment pipeline can also be quickly
triggered from the same panel, and likewise a roll back to
a previous version if necessary.

Application deployment is carried out with Ansible
[19]. The Python application’s wheels [20] are built on
GitLab CI, dependencies are locked, and then with Ansi-
ble, binaries are transferred to the deployment server
where the Python virtual environment is re-created and
the application deployed.

The deployment of the backend server is also triggered
from the same pipeline. The server and application code
are stored in the same repository, which allows to version
and deploy them together to production.

Docker images are built which contain the backend
server's binaries and then deployed with Ansible to the
various environments (DEV, STAGING, RC, PROD).
One such environment comprises a Podman pod [21] with
three running containers: two for the server to facilitate
rolling updates, and one Nginx container to delegate the
incoming requests between the two other containers.

CHALLENGES AND LESSONS LEARNT
Python for GUI

From the end of 90’s until 2020, the vast majority of
CERN Controls desktop applications were implemented
in Java, for many years using the Swing toolkit, and more
recently JavaFX.

For the new Timing application, it was decided to
switch to Python and PyQt. The decision was not easy
and was mainly dictated by the announcements made by
Oracle for deprecation of Swing and discontinued support
for JavaFX. Both frameworks are unlikely to disappear
within the next few years (Swing will still remain a part
of the JDK at least over the next few years), however
their future beyond the time frame of 8-10 years is very
uncertain. The lifetime of CERN controls applications
(including Timing App Suite) is typically beyond 20
years, therefore for the development of new GUI soft-
ware, requiring significant investment, it was preferred to
switch to a framework that is actively developed and
maintained, and whose future seems to be much more
reassuring.

Python is a powerful, flexible, easy-to-learn and easy-
to-use language. One needs less lines of code to perform
the same task when compared to other major languages
like C++ or Java, which turns into a better productivity.
These advantages apply also to GUI programming. The
biggest issue confronted when developing the application
comes from the flexibility of the language i.e. dynamic
typing and lack of compilation checks.

While the codebase of the application was growing,
many internal modifications were applied, such as renam-
ing classes, functions and variables, moving parts of the
logic from one place to another, replacing one class with
another etc. PyCharm is dealing with most of the refactor-
ing quite well, but occasionally was failing to properly
identify the type of a variable and not applying the re-
quested change. After realizing this, type hints were con-
sistently used all over the code, paying particular attention
to function declarations i.e. parameters and return types.

The static analysis tools came in very useful to catch
various issues related to the code refactoring, however the
ultimate safety net to protect from these kinds of risks
was the high coverage of the code by automated tests.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV015

THPV015C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

906 User Interfaces and User eXperience (UX)

PyQt Toolkit
Qt provides all standard components designed follow-

ing the model/view architecture, therefore their usage did
not pose any major problems. The concept of signals and
slots for establishing communication among various
components permits flexibility when dealing with GUI
events and results in a smooth codebase.

PyQt is one of the most used UI frameworks for Python
therefore there is a relatively big community behind it.
There are many learning resources for Qt and PyQt, how-
ever a complete and up-to-date PyQt beginners tutorial,
with simple and more advanced code examples was found
to be missing. Answers to most specific questions could
be found, but this required browsing through different
forums and blogs, and often applying solutions given for
C++ Qt or PyQt4, to the PyQt5-based application.

There is a certain learning curve, especially when it
comes to a bit more advanced usage of UI widgets, alt-
hough once foundations were established and the con-
cepts became familiar, the Qt API documentation was
deemed satisfactory most of the time.

The documentation of the testing library, pytest-qt, is
rather modest, so learning it and setting up bases for UI
tests required a bit of time to experiment and browse Qt
forums.

On several occasions segmentation faults (coming from
the Qt widgets) were encountered. At first these were not
straightforward to understand, but with time they could be
interpreted, and it quickly became possible to identify
their source.

Architecture
Implementing the GUI in Python and the backend in

Java did not pose any issues. The advantages of both
languages and corresponding frameworks could be lever-
aged to develop the adequate logic in the most efficient
way.

What comes as a drawback in this kind of approach is
the duplication of domain objects (or Data Transfer Ob-
jects) as they are needed in both languages. The Timing
API is relatively small and the domain objects quite sim-
ple, therefore implementing and maintaining them in Java
and Python was a negligible effort.

CONCLUSIONS
After two decades of developing desktop controls ap-

plications using Java, it was decided to change the pro-
gramming language to Python with PyQt selected as the
widget toolkit. The choice was not obvious, but the end
result is more than satisfactory, and the same approach is
now foreseen for some other applications e.g. the CERN
developed Front End Software Architecture [22] diagnos-
tic tool (known as the FESA Navigator).

Efficiency and flexibility, while preserving readability
of Python-based applications as compared to Java, comes
along with the lack of compile time verification of the
codebase. Therefore, a rigorous approach to Continuous
Integration performing static code analysis, together with
high coverage by automated testing is deemed indispen-
sable for any operational application.

REFERENCES
[1] V. Baggiolini et al., “JAPC - the Java API for Parameter

Control”, in Proc. ICALEPCS'05, Geneva, Switzerland,
Oct. 2005, paper TH1.5-8O.

[2] J. Lauener and W. Sliwinski, “How to Design & Imple-
ment a Modern Communication Middleware Based on
ZeroMQ”, in Proc. ICALEPCS'17, Barcelona, Spain, Oct.
2017, pp. 45-51. doi:10.18429/JACoW-ICALEPCS2017-
MOBPL05

[3] Nginx, https://www.nginx.com
[4] Qt5, https://doc.qt.io/qt-5/model-view-

programming.html

[5] Qt5, https://doc.qt.io/qt-5/qmodelindex.html
[6] PyQt5 Tools,

https://pypi.org/project/pyqt5-tools/
[7] Importing the UI File in Python,

https://nitratine.net/blog/post/how-to-import-
a-pyqt5-ui-file-in-a-python-gui/#importing-the-
ui-file-in-python

[8] First Steps with Qt Designer, https://www.pythonguis.
com/tutorials/first-steps-qt-creator

[9] PyQt5 Auto Compiler,
https://pypi.org/project/pyqt5ac

[10] PyTest Qt, https://pypi.org/project/pytest-qt
[11] Qt5 Test, https://doc.qt.io/qt-5/qtest.html
[12] QtBot, https://pytest-qt.readthedocs.io/en/

latest/reference.html#pytestqt.qtbot.QtBot.stop

[13] CI Pipelines,
https://docs.gitlab.com/ee/ci/pipelines

[14] PyTest GitHub Actions, https://pytest-
qt.readthedocs.io/en/latest/troubleshooting.htm
l#github-actions

[15] Flake, https://pypi.org/project/flake8
[16] Pylint, https://pylint.org
[17] Mypy, https://mypy.readthedocs.io/en/stable
[18] CI Environments,

https://docs.gitlab.com/ee/ci/environments

[19] Ansible, https://www.ansible.com

[20] Python Wheels, https://realpython.com/python-
wheels

[21] Podman,
https://mohitgoyal.co/2021/04/23/spinning-up-
and-managing-pods-with-multiple-containers-
with-podman

[22] M.Arruat et al., “Front-End Software Architecture”, in
Proc. in Proc. ICALEPCS'07, Knoxville, Tennessee, USA,
Oct. 2007, paper WOPA04.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV015

User Interfaces and User eXperience (UX)

THPV015

907

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

