
ADOPTING PyQt FOR BEAM INSTRUMENTATION

GUI DEVELOPMENT AT CERN

S. Zanzottera, S. Jensen, S. Jackson, CERN, Geneva, Switzerland

Abstract

As Java GUI toolkits become deprecated, the Beam

Instrumentation (BI) group at CERN has investigated

alternatives and selected PyQt as one of the suitable

technologies for future GUIs, in accordance with the

paper presented at ICALEPCS19.

This paper presents tools created, or adapted, to

seamlessly integrate future PyQt GUI development

alongside current Java oriented workflows and the

controls environment. This includes (a) creating a project

template and a GUI management tool to ease and

standardize our development process, (b) rewriting our

previously Java-centric Expert GUI Launcher to be

language-agnostic and (c) porting a selection of

operational GUIs from Java to PyQt, to test the feasibility

of the development process and identify bottlenecks.

To conclude, the challenges we anticipate for the BI

GUI developer community in adopting this new

technology are also discussed.

INTRODUCTION
The software section of the Beam Instrumentation

Group at CERN (SY-BI-SW) has a mandate, to provide

expert GUIs allowing hardware experts to manage and

diagnose instrumentation. As explained in detail in our

preliminary evaluation[1], the software stack consists of

several layers, where the most high-level ones, including

the GUIs, have been traditionally implemented in Java.

However, as Java GUI technologies age and become

deprecated, efforts[1,2,3] were made to identify suitable,

more modern replacements. As these evaluations

concluded, no alternative Java framework could be

identified, leading to the option of PyQt.

Adopting PyQt is not trivial: Firstly, tools, services and

frameworks must be developed for integration with

CERN's control system. Secondly, existing GUIs cannot

simply be migrated – they must be rewritten. This

represents a massive effort in terms of redesigning and

reprogramming. In addition, developers will have to adopt

Python as a programming language, which is a challenge

in itself, as Python is fundamentally different from Java in

many aspects.

As integration with CERN’s control system is

addressed by another team at CERN, we have been able

to focus on the GUI programming aspect itself (GUI

management tools, widgets, proof of concept GUIs) and

also on the adaptation of our decade-old Java-oriented

GUI development workflow to a more language-agnostic

one, supported by more generic tools.

PYTHON TOOLS FOR EXPERT GUIS

Devtools: bipy-gui-manager

Previous integration efforts resulted in a set of tools and

environments under the name of Acc-Py[4]. However,

none of these tools are oriented towards GUI

development: they all target a generalised Python

codebase, favouring in practice CLI applications and

libraries. Consequently, we proceeded to define a set of

best-practices to be followed in order to develop Expert

GUIs with PyQt and embarked on the creation of a

specific tool, the “bipy-gui-manager” to encourage (and

partially enforce) them.

Upon invocation, this command line utility collects

some basic project information (project name, author

name, author email etc…) and then creates a template

project in the desired location, pre-configured with its

own GitLab repository (created on the fly), a dedicated

virtual environment, a template for Sphinx-based

documentation and a workflow that provides Continuous

Integration, Continuous Deployment and Continuous

Documentation for the project. As a consequence, the

setup effort required from the developer to get a fully

standard project is close to zero. Even the README is

pre-written by compiling a template README with the

information gathered by the tool at setup time.

The bipy-gui-manager enables us to enforce group-

specific conventions and promote best practices in

general. This is valuable in homogenizing the code

produced, given the number of short-term developers in

the section and their different backgrounds.

One example is how bipy-gui-manager deals with

GitLab repositories. In the past, the section had problems

with critical pieces of software not checked into version

control, or not having their repositories synchronized with

the code that was effectively in production. The bipy-gui-

manager addresses the issue by 1) setting up the

repository for the developers, so even if they don’t know

or have no time for version control, the tool takes care of

it, and 2) by not allowing the developers to use its

simplified release function unless they commit all their

changes to GitLab. It is important here to note that bipy-

gui-manager does not really block the developer from

releasing uncommitted code: a slightly more expert

person can still do a release in a single (although longer)

command. However, we believe that such small hurdles

will make programmers follow conventions, which in turn

will help lower our code hand-over and maintenance

efforts. This is especially true for projects made by

newcomers and interns, who are often tasked with

developing or maintaining expert GUIs as a way to

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV014

User Interfaces and User eXperience (UX)

THPV014

899

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

familiarize themselves with systems they will eventually

be working on.

The bipy-gui-manager is already in use in the section

for our first Python Expert GUIs.

RAD Tools: ComRAD

Along with the development of Acc-Py, the team

produced another interesting tool for Rapid Application

Development (RAD), called ComRAD[5]. This paper will

not go into detail about the implementation details of this

zero-code GUI tool, but rather highlight how it has

contributed to our PyQt efforts.

While initially aimed only at prototypes and fixed-

display (non interactive) applications, its scope has been

gradually expanded, and it has eventually became an

interesting tool for general Expert GUI development.

Therefore, we decided to perform an evaluation of this

tool and understand which role it could take in our

standard PyQt development workflow. Our requirements

for a successful evaluation of this tool included:

• Do not limit the developers from using the full

capabilities of PyQt. This is important to allow

Expert GUIs to grow in complexity if the need

arises.

• Allow the use of custom widgets, to be able to

extract components and reduce the development

time.

• Be able to package and deploy ComRAD

applications on our NFS file system as a regular

Python application.

• Have some actual benefit over bare PyQt. This was

important to avoid adding unnecessary complexity to

our tools without any effective gain.

Our analysis was generally positive: ComRAD matched

all our requirements and exceeded them by cutting

development time for simple Expert GUIs to hours rather

than days.

Consequently, ComRAD was added to our workflow.

Such an addition was performed by adapting bipy-gui-

manager, which is now capable of creating both PyQt and

ComRAD oriented Expert GUI projects.

This operation also reinforced the relevance of bipy-

gui-manager for controlling our workflow: the tool was

easy to adapt to the new standard, and enabled all our

developers to develop ComRAD based applications

almost immediately at the end of our evaluation and the

decision to make it available to developers.

A LANGUAGE-AGNOSTIC LAUNCHER

One pillar of our Expert GUI ecosystem is the

AppLauncher[6] (Figure 1), a tool which provides two

main functionalities: a) it lets us manage user access to

expert GUIs, and b) it provides users a centralized

catalogue of the expert GUIs a user has access to.

On the operational computers in CERN’s Control

Center, the console managers point not to the

application’s binary itself, but to the AppLauncher

executable, with a parameter set to the desired application

name. This layer of abstraction allows on one side the

operators to have a reliable entry point to find

applications, and on the other hand gives the developers

more freedom on where and how to install their

applications for operational use, so long as they can be

registered in the AppLauncher and be launched on the

target machine.

Figure 1: The BI Launcher (left) and the old AppLauncher (right).

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV014

THPV014C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

900 User Interfaces and User eXperience (UX)

Given the nature of expert GUIs, accidental misuse

could lead to serious equipment damage; however, the

AppLauncher did not enforce any strict access control,

and it was rather oriented towards helping users finds the

correct GUI faster access rather than limiting access to

them. In addition, being designed to support Java

applications only, it was relying at its core on the Java

Web Start system, which has been preserved at CERN

after its demise by Oracle as an in-house tool called JWS.

The AppLauncher, although rather simple, could not be

repurposed to support any other language, and therefore

this option was excluded in favour of a more radical one:

a full rewrite. The new AppLauncher, now called simply

BI Launcher, is a new Java Swing application that

imitates to some degree the look and feel of its

predecessor, while fundamentally rethinking its internals.

By adopting more modern Java standards and reducing

the features to what the section mostly uses this tool for,

the BI Launcher ended up as a simpler application with a

compact codebase, able to launch Java (though JWS),

Python (through Acc-Py tools) and Web pages (through

the browser) from the same interface. It also modernised

the security aspects of accessing the application

catalogue, by utilising CERN’s widely used role-based-

access system (RBAC[7]).

The old AppLauncher was eventually decommissioned

in September.

FIRST PYTHON EXPERT GUIS

PyQt Expert GUIs

In parallel to the work detailed above, we also ported a

few Expert GUIs to PyQt to use them as a proof of

concept, and to identify potential blocking issues that we

might have overlooked. Candidate GUIs for this role had

to match the following requirements:

• Be small: in order to be able to quickly iterate in case

of issues, a good candidate GUIs should be small,

both in the expected codebase size and in the

interface.

• Be thin: we are not interested at this stage in GUIs

that contain a lot of logic unrelated to the interface

(like complex calculations or domain-specific

algorithms). We need GUIs that do nothing more

than allowing the user to read, write and monitor

values.

• Already due for a rewrite: some GUIs were already

in need of a full rewrite. For example, we have a

number of JavaFX-based GUIs which we want to

migrate, due to the fact that JavaFX is no more a

recommended technology for GUIs. Other examples

include GUIs based on Swing or Qt (C++),

developed by other teams but assigned to our section

for maintenance.

• Include commonly used widgets: expert GUIs tend to

include common widgets, like plots, timing displays,

log viewers, toggles, etc. Testing the new technology

on these components was mandatory.

• Be actively used: the ultimate test is operational use.

We opted for GUIs being actively used, rather than

made-up test cases.

After an inspection of the collection of GUIs that

matched the above requirements, we selected a

couple of them for the initial port. The chosen

applications were:

• A medium-small application already partially ported

to PyQt by an intern in a previous evaluation of the

technology, which we are going to identify as “BGI

App”;

• A very small JavaFX application with some

interesting features and plot customizations, which

we are going to refer to as “BCF App” (Figure 2).

We began the process from the BGI App in an attempt

to define a good project template to be followed by other

applications. We defined the features at a project level

(GitLab repo, test suite, CI, README, code structure,

etc) but also at a visual level (mandatory widgets like the

log panel at the bottom of the window, timing bar at the

top, etc…) and used the resulting template in the bipy-

gui-manager to ensure uniformity for future applications.

Once this step was complete, we moved on to the BCF

App, the first real port from scratch. In this case we

started with the newly created template, and we verified

that the bipy-gui-manager was an effective tool for the

task. Then we proceeded with the actual port and

succeeded in producing a fully functional application

which replicated faithfully all the features present in its

JavaFX counterpart.

In the process of porting both application we also

produced a number of reusable PyQt widgets that,

especially once repackaged in BE-CSS widget libraries,

are going to make building future PyQt applications even

faster and simpler than it was for these ones. Examples of

these widgets include the Timing Bar, a widget that

displays timing information of a selected accelerator, the

Log Console, a highly customizable widget that receives,

displays and filters the logs, the crosshair, that was added

to the basic plots widget after our example, plus several

others that are still being evaluated.

ComRAD Expert GUIs

Shortly after porting the two Expert GUIs mentioned

above, ComRAD became ready for evaluation. As a test

case, we chose to migrate and simplify a C++ Qt-based

application called "PXL App".

Our experiences with ComRAD were considered highly

successful, due to a series of benefits that we identified

while working on the application:

• Faster development. The initial iterations of the GUI

were very fast and required barely any code, due to

the great amount of Qt UI files that could be reused

from the C++ based counterpart. In addition,

ComRAD provides useful CERN-specific widgets

which facilitated shorter iterations.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV014

User Interfaces and User eXperience (UX)

THPV014

901

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Figure 2: Example of an expert GUI ported to PyQt from JavaFX: the BCF App.

• Decoupling interface design and interface logic.

ComRAD enabled us to design the interface with no

boilerplate code to support it, through enhancements

made on the Qt Designer. This decoupling allowed

us to first build an application with no connections to

the middleware and iterate on the design without the

need to think about the code.

• Progressive wiring. ComRAD allowed us to

progressively connect widgets from the simplest to

the most complicated. In addition, for the majority of

the widgets, it required no code at all to connect to

the control system. This code-less approach could be

used also in simple plot widgets, and code was

required only for the most complex ones.

• Allows pure PyQt code. ComRAD was designed to

allow developers to fall back to a pure PyQt-style

application where needed, while allowing the rest of

the application to benefit of its RAD facilities. In

fact, while ComRAD has its own enhanced Designer

files, it can read and manage regular Qt Designer

interfaces too; while it has its own highly automated

system to connect to the middleware, it also allows

developers to use their own connections, and so on.

This is a very strong feature, as it means that the

framework will not hinder the developer if they need

to implement something different from what

ComRAD was designed for, which means that it will

be easier to support in the long-term, and even to

replace at a future date if the need arises.

Performance Assessment

One of the most worrying concerns of porting our

Expert GUIs to Python-based technologies was the

performance of some demanding widgets, for example

tables and plots. While we met no performance

bottlenecks during the development and operation of the

first two PyQt GUIs, we finally faced the problem with

the PXL App, when we ported it to ComRAD. This app

was initially written in C++, and not in Java, due to

several reasons: some demanding plots, hundreds of

widgets to display, and a special C++ library being used

in the backend. Although simplified in its ComRAD

version, this GUI still featured a plot that was required to

fully re-render up to 1.048.576 points (1024 lines with

1024 data points each) in less than a second in order not

to freeze or skip updates.

We soon realized that such requirement could not be

satisfied, and that the GUI would be able to barely deal

with 400 such lines (409.600 points). However, after

presenting the issue to the users of this application, we

realized that there was no need to display the entire bulk

of the data and that displaying a subset of 100 lines was

sufficient. With this new concession, the application was

able to run smoothly.

FUTURE WORK
Now that the technology is proven and some GUIs have

been successfully ported, the next steps involve primarily

the port of all the remaining GUIs that need a rewrite.

This port will not be simply a translation of the old

codebase into a new one: at every iteration we plan to

assess which components can be transformed into generic

widgets, extract them, package them, and release them to

be reused as ComRAD widgets for the following

applications.

We believe this process will benefit both ourselves, by

speeding up the development of more complex

application, and the wider PyQt and ComRAD

community at CERN.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV014

THPV014C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

902 User Interfaces and User eXperience (UX)

Figure 3: Example of an expert GUI ported to ComRAD from C++ Qt: the PXL App.

CONCLUSION
Adopting PyQt as the main framework for Expert GUIs de-

velopment in our group was not a straightforward task. Most
of the assumptions made in the past about the applications
had to be re-evaluated to allow non-Java based GUIs to enter
the scene. With the help of another team (BE-CSS) which
took care of the middleware integrations, we progressively
cleared the path for seamless PyQt GUI development by: a)
modifying the AppLauncher to enable launching of any type
of GUI application, b) developing the bipy-gui-manager to
promote standardization and best practices within our team
c) porting two pilot GUIs to PyQt, d) porting one GUI to
ComRAD and e) assessing the performance capabilities of
the plots in a demanding real use-case.

While the future for PyQt as the main technology for
future GUIs is still not fully clear, it is clear that PyQt will
be a key technology for RAD purposes. In this context, the
work put in place to maintain, control and catalogue these
efforts will be valuable regardless of whether we decide to
move our entire portfolio of GUIs to PyQt technologies or
not, and we expect this workflow to serve us well in the years
to come.

REFERENCES
[1] S. Bart Pedersen and S. Jackson, “Graphical User Interface

programming challenges moving beyond Java Swing and
JavaFX”, in Proc. ICALEPCS’19, New York, NY, USA, Oct.

2019, pp. 637–640. doi:10.18429/JACoW-ICALEPCS2019-
MOPHA173

[2] I. Sinkarenko, S. Zanzottera, and V. Baggiolini, “Our journey
from Java to PyQt and Web for CERN accelerator control
GUIs”, in Proc. ICALEPCS’19, New York, NY, USA, Oct.
2019, pp. 807-811. doi:10.18429/JACoW-ICALEPCS2019-
TUCPR03

[3] S. Zanzottera, “Evaluation of Qt as GUI framework for ac-
celerator controls”, M.Sc. thesis, Politecnico di Milano, Italy,
2018.

[4] S. Zanzottera, “Status of Python for GUIs”, https:
//indico.cern.ch/event/1031183/contributions/
4330130/attachments/2239943/3797572/Status%
20of%20Python%20for%20GUIs.pdf

[5] I. Sinkarenko, “Python GUI Status Update” https:
//indico.cern.ch/event/1025056/contributions/
4303998/attachments/2235763/3789373/Python%
20GUI%20Status%20Update.pdf

[6] P. Karlsson and S. Jackson, “The Introduction of hierarchical
structure and application security to Java Web Start devel-
opment”, in Proc. ICALEPCS’05, Geneva, Oct 2005, paper
TH3A.2-5O

[7] K. Kostro, W. Gajewski, and S. Gysin, “Rolebased authoriza-
tion in equipment access at CERN”, in Proc ICALEPCS’07,
Knoxville, Tennessee, USA, Oct. 2007, paper WPPB08, pp.
415-417.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV014

User Interfaces and User eXperience (UX)

THPV014

903

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

