
WEB GUI DEVELOPMENT AND INTEGRATION IN
LIBERA INSTRUMENTATION

D. Bisiach†, M. Cargnelutti, P. Leban, P. Paglovec, L. Rahne, M. Škabar, A.Vigali
Instrumentation Technologies doo, Solkan, Slovenia

Abstract
During the past 5 years, Instrumentation Technologies

expanded and added to the embedded OS running on
Libera instruments (beam position instrumentation, LLRF)
a lot of data access interfaces to allow faster access to the
signals retrieved by the instrument. Some of the access in-
terfaces are strictly related to the user environment Ma-
chine control system (EPICS/TANGO), and others are re-
lated to the user software preferences (Matlab/Python). In
the last years, the requirement for easier data streaming was
raised to allow easier data access using PC and mobile
phones through a Web browser. This paper aims to present
the development of the web backend server and the reali-
zation of a web frontend capable to process the data re-
trieved by the instrument. A use-case will be presented, the
realization of the Libera Current Meter Web GUI as a first
development example of a Web GUI interface for a Libera
instrument and the starting point for the Web GUI pipeline
integration on other instruments. The HTTP access inter-
face will become in the next years a standard in data access
for Libera instrumentation for quick testing/diagnostics
and will allow the final user to customize it autonomously.

INTRODUCTION
In the accelerator environment, the data access is usually

performed with well-established and standard access using
EPICS, TANGO, Labview, and Matlab interfaces. This
software does not allow only access to data but also inte-
grates the control system and safety interlocks to prevent
damage to the accelerator block unit.

The drawback of this reliable and safe type of implemen-
tation is that any new instrument that is placed in the accel-
erator environment needs to be configured on the server-
side and usually this procedure requires time and effort
since the connection is not immediate.

The need for a faster way for evaluation and testing of
new devices triggered the attention to the Web interfaces
that were already developed in-house by the Red Pitaya
project [1] that integrates a fast and easy to access interface
that can be used for quick data acquisition.

INTERFACE BETWEEN INSTRUMENT
AND APPLICATION SOFTWARE

The access to the setting and the data provided by the
instrument is allowed by the software structure reported in
Fig.1. The lower layer is tightly bonded to the hardware
interface and is responsible to communicate at a lower
level with the FPGA and the CPU processes. The second

layer called Machine Control Interface (MCI) connects all
the user interfaces by providing APIs that enable the serv-
ers to access the configuration parameters, the status infor-
mation, and the data acquired by the instrument. The
server-side applications expose through the network to the
client-side different application protocols: libera-ioc (EP-
ICS), libera-ds (TANGO), libera-telnet (Labiew/Matlab),
libera-cli (user access with the bash) and, as a new feature
described in this paper, the libera-http interface that enables
the Web access.

Figure 1: Application stack layer.

Some of these protocols can run in parallel (e.g. EPICS,
bash, and HTTP) which makes the troubleshooting of the
instrument much easier and more efficient.

HTTP APPLICATION ARCHITECTURE
BASED ON REST API

As mentioned in the previous paragraph, access to the
instrument can be performed by any device that can access
the same network using the HTTP protocol. A typical use
case is reported in Fig. 2 where the instrument is accessible
using the wired and wireless network:

Figure 2: Access to the instrument in a local network.

The system architecture is based on the REpresentational
State Transfer (REST) software architectural style and pro-
vides the services through Application Programming Inter-
faces (API) that allow the programmer to easily implement
access to the instrument internal interfaces.

The server interface starts during the boot of the instru-
ment and opens a port that is accessible to the other devices

† danilo.bisiach@i-tech.si

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV009

User Interfaces and User eXperience (UX)

THPV009

875

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

connected to the same network environment. The Libera
instrument acts as a server, and any local device acts as a
client. The communication API uses the JavaScript Object
Notation (JSON) to exchange the data between the server
and the client is reported in Fig. 3 and Fig. 4:

Figure 3: HTTP REST API application architecture.

The requests are performed on the client-side by sending
desired parameters in JSON format to the REST API. The
server will then return the requested node in JSON format
that will be processed by the client and presented in a hu-
man-readable format on the WebGUI.

Figure 4: HTTP REST API application architecture node
detail.

The integration of the HTTP server on different instru-
ments is almost immediate since the building of the appli-
cation is fully automated by the existing revisioning and
building system. Different instruments, so different soft-
ware applications, can share the same code for the server
application and this feature allows high scalability of the
server application.

The only part that needs to be customized development
for every new application is the WebGUI code which in-
cludes the path to the application nodes. All the settable
nodes on the instrument are specified by the node-set labels
where the path of a specified node can be accessed as re-
ported in Fig. 5:

Figure 5: Code snippet with the implementation of a node
readout from the system.

The node-set tag is composed by the name we want to
give to the variable in the WebGUI, by the path label that
is representing the target node in MCI application and al-
lows access to a specific settable variable or a data stream
on the instrument, and by the polling-period which speci-
fied the refresh time in the WebGUI application.

HTTP APPLICATION ARCHITECTURE
BASED ON WEBSOCKET

An additional high-performance interface based on Web-
Socket technology was integrated into the Libera software.

The interface is compliant with the RFC 6455 and com-
patible with the HTTP protocol by allowing a full-duplex
communication between the client and the server running
without the need to re-establish the communication at
every request but by keeping it open to facilitate the real-
time data transfer and data streaming over TCP. Figure 6
reports the architecture implemented with the WebSocket
architecture:

Figure 6: WebSocket application architecture.

The main benefit of this implementation is to allow a
maximum performance on data exchange with minimum
overhead, and this can make the difference with the
REST/API.

It was chosen for the implementation of the 12 Channel
Libera Current Meter WebGUI interface which can handle
and plot the data acquired from the instrument with mini-
mum latency and high robustness.

 One of the main benefits of the HTTP implementation is
to allow the final user to customize and integrate the appli-
cation.

The extensions of the WebGUI can consist of the simple
addition of buttons/graphical effects or also of some more
consistent improvements. The realization of the 12 Chan-
nel Current Meter GUI interface was a very extensive

EXTENSION AND CUSTOMISATION
OF THE HTTP USER INTERFACE:

DEVELOPMENT AND INTEGRATION
OF A 12 CHANNEL CURRENT METER

customization of the user software that consisted in the im-
plementation of really demanding features listed below:

1. Capability to perform calculations on the data ac-
quired such as mean values and standard deviation for
the acquired signals.

2. Continuous backup of the acquired data in .csv file
format.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV009

THPV009C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

876 User Interfaces and User eXperience (UX)

3. Integrate the data acquisition from 3 independent 4-
channel acquisition instruments as a 12 channel acqui-
sition instrument.

4. The ability of the WebGUI to run smoothly for 1-
month operation, without any loss of data and by
keeping the measurement going during the operation.

These features required a high number of additions, test-

ing, and revision of the actual HTTP server implementation.
Due to these features, the decision was to implement all the
communication based on WebSockets.

All the 3 integrated instruments were acting as an inde-
pendent device with 12 channels by maintaining a constant
synchronization between the 12 channels. The imple-
mented architecture is reported in Fig. 7 where one 4-chan-
nel Libera Current meter unit is acting as the master unit
which includes the HTTP server on which the client will

access the acquired data. The two other 4-channel Libera
Current meter are synchronized with the master unit and
continuously provide the acquired data stream:

Figure 7: 12 Channel Libera Current meter integration. 3
independent instruments are acting as one on the WebGUI
interface side.

The WebGUI screenshot of Fig. 8 reports the final result

of the implementation.

Figure 8: 12-Channel Libera Current meter integration
WebGUI.

The most critical point was the testing of the user inter-
face by checking the ability to run smoothly for one month
time. These tests were performed by adding to the applica-
tion software many additional data exchange requests and
to stress the memory consumption of the Web browser. The
interface was demonstrated to work smoothly for 30 con-
secutive days with this additional workload on Microsoft
Edge (based on the Chromium engine). The main parame-
ters were constantly monitored using the Web browser di-
agnostics features such as the task manager and the perfor-
mance options in the Web browser developer mode. The
use of the WebSocket architecture allowed the interface to
run smoothly even if a lot of data were continuously accu-
mulated and plotted.

As a first experience and proof of concept about the use
of WebGUI interfaces based on Javascript for instrument
data acquisition, the decision is to integrate the Selenium
plugin for Python into the future projects to automate the
GUI regression tests and scalability during the QC opera-
tions.

RESULTS AND CONCLUSIONS
The development of an HTTP REST API and Web-

Socket interfaces required a lot of effort in terms of system
implementation, integration, testing, and debugging. One
of the main benefits is that such a system can be easily ac-
cessed by any final user without the need for any control
system software (EPICS, TANGO) or proprietary software
(Matlab, Labview) already running on the data acquisition
system. These features made it very reliable and the first
choice of use during system troubleshooting and installa-
tion.

The other benefit was to introduce high scalability of the
interface: many instruments can benefit from this imple-
mentation since the HTTP server is available as a quick
add-on for all the Libera instruments with minimal effort
dedicated to porting. The performance of the WebSockets
can make a difference when a large amount of data needs
to be retrieved from the instrument.

Another future implementation within the HTTP or
WebSocket can be the GRPC [2] Node-based implementa-
tion, which will unify high performance in an easy-to-use
platform.

As an ending note, we can confirm that the developed
HTTP REST API and WebSocket interface has now
became one of the first choice data access interfaces for the
testing of the instruments.

ONLINE SOURCE
[1] RedPitaya website, https://redpitaya.com/
[2] GRPC framework, https://grpc.io/

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV009

User Interfaces and User eXperience (UX)

THPV009

877

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

