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Abstract
EPICS [1] IOCs at  Diamond Light Source (DLS) [2]

are  built,  deployed,  and  managed  by  a  set  of  in-house
tools that were implemented 15 years ago. This paper will
detail a proof of concept to demonstrate replacing these
legacy  tools  and  processes  with  modern  industry
standards.

IOCs  are  packaged  in  containers  with  their  unique
dependencies included.

Container orchestration for all beamlines in the facility
is  provided  through  a  central  Kubernetes  cluster.  The
cluster has remote nodes dedicated to each beamline that
host IOCs on the beamline networks.

All source,  images and individual IOC configurations
are  held  in  repositories.  Build  and  deployment  to  the
production registries is handled by continuous integration.

Development  containers  provide  a  portable
development  environment  for  maintaining  and  testing
IOC code. 

INTRODUCTION
The approach presented here has 5 main themes:

1. Containers:  package  each  IOC  with  its
dependencies  and  execute  it  in  a  lightweight
virtual environment. [3]

2. Kubernetes:  centrally  orchestrates  all  IOCs  at
the facility [4].

3. Helm Charts: deploy IOCs into Kubernetes and
provide version management [5].

4. Repositories:  Source,  container  and  Helm
repositories   hold  all  of  the  assets  required  to
define a beamline’s IOCs.

5. Continuous  Integration:  source  repositories
automatically build containers, Helm charts and
deliver them to package repositories.

An  initial  proof  of  concept  (POC)  has  been
implemented at DLS on the test beamline BL45P. All the
source code for the proof of concept, plus documentation
and  tutorials  can  be  found  in  the  GitHub  organization
epics-containers [6].

SCOPE

The POC initially  targets  Linux IOCs.  This  includes
IOCs that communicate with their associated devices over
the network, as well as those that connect to local devices
through USB,  PCIe etc. It does not include provision for
Operator Interfaces (OPIs) as these vary greatly between
facilities. Future plans include:

1. Support OPIs by having a 2nd container for each
IOC instance that serves OPI files over HTTP.

2. Supporting  RTEMS  hard  IOCs:  using  a
containerised developer environment shared with
soft IOCs.

3. Support  Windows  IOC development  through  a
similar approach to RTEMS.

CONTAINERS
A class of  IOCs that  connect  to  a  particular  class  of

device  will  all  share  identical  binaries  and  library
dependencies; they will differ only in their start-up script
and  EPICS  database.  Thus  containerized  IOCs  may be
represented as follows:

1. Generic IOC:  A container  image for  all  IOCs
that will connect to a class of device.

2. IOC Instance: a Generic IOC image plus unique
instance  configuration.  Typically  the
configuration is a single start-up script only.

This  approach  means  that  the  number  of  container
images  is  kept  reasonably  low  and  they  are  easier  to
manage. 

Image Layering
Container images are typically built by layering on top

of existing images.
For the POC, an image hierarchy is used to improve

maintainability as shown in Fig. 1 below. 

Figure 1: Image hierarchy for the generic IOCs in the 
current proof of concept.

EPICS base [7] and essential tools are compiled inside
one  image;  the  most  commonly  used  support  modules
(primarily Asyn [8]) and the AreaDetector [9] framework
also have their own images. Generic IOC images are then
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leaves in the hierarchy and are based upon the appropriate
dependencies.

Images also have internal  layering and every layer is
shared  between  all  instances  of  IOCs,  both  in  image
repositories and at runtime. Fig. 2 shows and example of
this internal layering.

Figure 2: Example of the layered nature of a container 
image for the pmac motor controller generic IOC.

Developer Container
To save on resources  at  runtime, all  images are built

using a staged Dockerfile [10]. There are two targets: a
developer target which includes all of the compilers and
tools used to build the runtime assets; and a runtime target
containing the minimum assets to run the generic IOC.

The  developer  targets  are  used  to  provide  an
environment for developers to compile and debug the IOC
and  its  dependent  support  modules.  This  provides  a
portable development environment and means there is no
need  to  replicate  the  tool  chain  directly  on  developer
workstations.

KUBERNETES
A central Kubernetes cluster is used to orchestrate the

IOC instances for all beamlines in the facility. It provides
the  following functionality  that  is  typically  handled  by
separate tools:

• Auto start IOCs when servers come up
• Manually Start and Stop IOCs
• Monitor IOC status and versions
• Deploy versions of IOCs to the beamline
• Roll back to a previous IOC version
• Allocate the server which runs an IOC
• View the current log
• View historical logs (via graylog at DLS)
• Connect to an IOC and interact with its shell
• Debug an  IOC (by  starting  a  bash  shell  inside  its

container)

Cluster Topology
A  single  multi-tenant  central  cluster  runs  all  of  the

worker nodes. This provides centralized management of
all  beamlines and other  services.  The High Availability
(HA) control plane has 3 virtual servers distributed across
3 physical servers. 

Each  beamline  has  its  own  physical  servers  that  are
configured as remote worker nodes to the central cluster.
This means that:

1. IOC instances are close to the hardware that they
communicate  with,  avoiding  network
bottlenecks.  This  is  important  for  high
bandwidth IOCs such as area detectors. 

2. IOC instances may be given affinity to a specific
server and communicate directly with hardware
connected to that server (e.g. a USB device)

3. IOC instances reside on the same subnet as  the
beamline’s Channel Access (CA) clients and any
network attached devices. This is a requirement
for CA and some network attached devices (see
below).

Each beamline has its own Kubernetes namespace and
user  id  in  which  all  the  IOC  instances  will  run.  This
provides isolation between the beamlines.

Container Networking
Containers  use  namespaces  to  isolate  their  use  of

system resources. This is an important feature for building
reliable, scalable  and secure applications.  However,
EPICS IOCs rely on network protocols that may not suit
network isolation because they do not easily pass through
Network Address Translation (NAT). For this reason the
POC  foregoes  virtual  networks  and  uses  the  native
networking of the host server.

Channel  Access  (CA)  and  pvAccess  (PVA)  are  the
primary protocols for communication between IOCs and
clients.  Both  protocols  require  a  broadcast  in  order  to
establish initial  communication. The broadcast  does not
work via NAT to a virtual LAN.

Other protocols between IOCs and devices had issues
with virtual networks. e.g.  GigE Vision Stream Protocol
(GVSP) establishes a connection by passing an IP address
and port  number  in  the  application  layer  and  therefore
does not pass through a NAT.

Workarounds to the protocol issues were investigated
on a case by case basis but it became clear that the only
reliable solution was to use native networking within a
single subnet. This is a slight concession to security, but is
no  worse  than  traditional  IOC  deployment.  All  other
namespaces are  applied to IOC containers  and they are
isolated from the host in all respects except network.

HELM
The POC supplies a Helm Chart Library that describes

all of the Kubernetes resources required to deploy an IOC
instance  to  a  beamline.  Each  Beamline  has  a  source
repository that specifies a Helm Chart for each of its IOC
instances.  The  beamline  source  need  only  refer  to  the
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Library and supply a few parameters to define the unique
properties of the IOC instance – most notably its start-up
script.  The  Library  has  templates  for  the  following
resources:

1. A Deployment [11] which makes sure 1 instance
of the IOC Pod is always running.

2. The Pod [12] is described within the Deployment
YAML.  It  includes  a  reference  to  the  Generic
IOC image it uses to launch the container.

3. A ConfigMap [13] which is mounted as a folder
containing the unique configuration for the IOC
instance.  This typically contains only a start-up
script.

4. A  Persistent  Volume  Claim  [14]  which  is
mounted to provide persistent storage across IOC
restarts  and  upgrades.  This  is  used  to  hold
autosave data.

5. Note  that  there  is  no  Kubernetes  Service  [15]
associated  with  the  IOC  since  it  uses  native
networking  and  is  addressed  via  the  host’s  IP
address directly.

Helm command line functions are used to deploy IOC
instances  to  a  cluster  and  manage  multiple  versions  of
IOCs within the cluster.

Helm charts may be stored in a  registry. For the POC
the registry is  provided by the epics-containers GitHub
organization.  New  versions  of  IOC  Helm  charts  are
released to the registry and then deployed from it. Fig. 3
demonstrates this release process.

REPOSITORIES
All of the assets required to manage a set of IOCs for a

beamline are held in repositories. Thus all version control
is done via these repositories and no shared file-systems
are required. The classes of repository are as follows:

1. Beamline  Source:  (1  per  beamline)  holds  the
source  for  Helm charts  for  each  IOC instance.
Also hosts the continuous integration (CI) steps

to generate Helm charts and publish them to the
Helm repository.

2. Container Image Source: (1 per Generic IOC)
holds the Dockerfile that describes the contents
of a Generic IOC. Also hosts the CI to generate
an image from the Dockerfile and publish to the
image repository.

3. Helm Repository:   (1 per IOC Instance) holds
the published IOC Instance Helm Charts ready
for deployment to Kubernetes.

4. Image Repository:  (1  per  Generic  IOC) holds
the  Generic  IOC  container  images  and  their
dependencies.

CONTINUOUS INTEGRATION
All published assets in this process are generated via CI

(see  Repositories  above).  Every  published  asset  has  its
own version number and its own source repository. When
releasing  an  asset  the  developer  will  version  tag  the
source repository. This causes the CI to build the source,
publish  the  result  and  tag  it  with  the  same  version
number.

The POC uses GitHub Actions [16] to implement its CI
and publishes assets to GitHub Packages [17]. However,
during development GitLab CI [18] and Google Container
Registry [19] were also tested.

CONCLUSION
The POC demonstrates that it is possible to deploy and

manage IOCs for  a  beamline  using only standard  open
source tools such as Kubernetes, Helm and GitHub. The
test beamline BL45P has successfully deployed its IOCs
using this approach and required no custom software or
scripts to do so.

DLS  will  continue  to  develop  this  approach  as  a
possible site wide solution. The epics-containers GitHub
organization  will  be  continuously  updated  to  track
progress.  The  organization  is  also  available  for
contribution from EPICS developers at other sites.

Figure 3: Example of a motion IOC (bl45p-mo-ioc-01) showing how the generic IOC image is built up, packaged with
deployment details into a Helm chart, and then deployed to a Kubernetes node.
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