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Abstract
In industry, containers have dramatically changed the way

system administrators deploy and manage applications. De-
velopers are gradually switching from delivering monolithic
applications to microservices. Using containerization so-
lutions provides many advantages, such as: applications
running in an isolated manner, decoupled from the operating
system and its libraries; run-time dependencies, including
access to persistent storage, are clearly declared. However,
introducing these new techniques requires significant mod-
ifications of existing computing infrastructure as well as a
cultural change. This contribution will explore practical
use cases for containers and container orchestration within
the CERN Accelerator Controls domain. We will explore
challenges that have been arising in this field for the past two
years and technical choices that we have made to tackle them.
We will also outline the foreseen future developments.

CONTAINERS IN CONTROLS SYSTEMS
Containers in a Nutshell

Namespaces started being implemented in the Linux ker-
nel in the 2000s. They provide isolation features on multiple
levels: while the mount namespace prevents the process
from accessing the rest of the Linux filesystem, the Process
ID (PID) namespace creates an independent PID number
space where the isolated process is given PID 1. There are
eight namespaces in total: mount, PID, network, interpro-
cess communication, time, time-sharing, user and cgroup.

Containers can be seen as industrialization of these isola-
tion mechanisms, where the use of namespaces is concen-
trated in a single "containerization layer". A containerized
application runs in an isolated manner, and requires its de-
pendencies (libraries) to be embedded (Fig. 1).

The Open Container Initiative (OCI) provides three speci-
fications defining how containerized applications are stored
(the Image Format Specification), run (the Runtime Specifi-
cation) and distributed (the Distribution Specification) [1].

CERN Use Cases
Having been used in industry for some time already, it was

clear that the benefits brought by containers could translate
to CERN’s Accelerator Control system. In April 2020, a
project was launched to introduce containers to the Acceler-
ator Controls landscape, in order to bring added value in a
variety of areas.

Firstly, is the ability to decouple from the underlying host
operating system and the flexibility this brings. At CERN,
∗ remi.voirin@cern.ch

Figure 1: Overview of a containerized software stack.

WinCC OA is used to manage many industrial SCADA sys-
tems [2]. Version 3.16 officially runs on CentOS 7 and Red
Hat Enterprise Linux (RHEL) 7, while 3.18 will be made
to run on Red Hat Enterprise Linux 8. Due to the mas-
sive number of WinCC OA applications, many of them for
critical systems, migration from version 3.16 to 3.18 must
be applied progressively. In contrast, the operating system
upgrade from CentOS 7 to the next platform, will concern
all hosts at once. For this case, deploying WinCC OA in
containers will make it possible to run version 3.16 in a Cen-
tOS 7-based container, while the underlying host is already
upgraded to RHEL 8 or a derivative.

Containerization is also becoming a de facto standard for
companies to deliver software to their clients. For example,
SourceGraph [3] is used in the CERN Controls software
community to index code, quickly search through it, and
create statistics. All deployment options for self-hosted in-
stances of SourceGraph are container-based.

Other software are delivered in container images for sim-
pler deployment and upgrades. This is the case for the Nexus
Repository Manager, which is used at CERN to manage
Python libraries [4].

Another advantage of container-based software delivery
is the idempotent behaviour of a product between develop-
ment and operational environments. This can translate into
two ways: streamlining the creation of development and
operational releases in a similar way, and easily providing
a containerized test setup. For the LHC Orbit Feedback
(OFB), the latter has proven cost and time effective. Instead
of running many test instances on a dedicated server and
configuring them via a database, it is possible to run a lo-
cal containerized copy and feed it directly with the desired
parameters.

Containers are also a way to distribute software that can
easily run regardless of the Linux distribution, or even the
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operating system, as the Docker company created a desktop-
oriented product for MacOS and Windows [5]. This has
been successfully used for multiple PyQt training courses at
CERN. It allows participants to run a particular Integrated
Development Environment (IDE), faster, and with a lighter
memory footprint than with a virtual machine.

Finally, there are many use cases where a clean and pre-
dictable software environment needs to be quickly generated,
for instance in the context of Continuous Integration (CI) and
Continuous Deployment (CD). A containerized environment
is the most effective way to get this done.

Issues and Limitations
The differences between a virtual machine and an OCI

container can be summarized in the most simple terms by
the fact that running a virtual machine implies executing a
guest operating system (kernel). Nevertheless, even in the
absence of a kernel, container images need to provide shared
libraries and basic building blocks like libc in order for an
application to run properly. These components are provided
by a Linux distribution, which means that they need to be
managed and kept up to date.

While most containers will run the CERN supported
Linux distribution, external containerized applications are
typically made with others like Alpine and Debian. Import-
ing such containers is similar to adding computers running
these alternative distributions in the Controls environment.
It therefore implies a need to track and address security
issues for a broader set of software.

Another issue is the growing complexity of the overall
software stack. In case of unexplained latency, lost packets,
or unexpected behavior, debugging involves more compo-
nents to analyze. For instance, using containers implies
having virtual interfaces to forward packets to them. Cap-
ping CPU and memory usage involves the use of cgroups,
which need to be understood and mastered in the system ad-
ministration team. Using additional debugging techniques
may be required, like eBPF [6].

Containerization is efficient for scaling and reproducing
software instances. However, when using proprietary soft-
ware, careful attention needs to be given to ensure licensing
terms are not violated.

Required Components
In order to provide functional containerization in a Con-

trols system, three components are required:
• a set of base images which will be used by developers

as a foundation to package and deploy containerized
software;

• a container registry to store images;
• a container engine, which is the piece of software made

to run containers on hosts.

BASE IMAGES
Base images are made to replicate a Controls host (techni-

cal console or server) running CERN CentOS 7 in a lighter
fashion. The "acc_cc7" base image is made from scratch

by setting up a few packages (e.g. the YUM or DNF pack-
age manager, a text editor) in a directory, then loading the
directory into the OCI image format.

Figure 2: CERN CentOS 7 base images.

CERN Accelerator Controls images are configured to sat-
isfy specific requirements, such as all Controls hosts running
software from a set point in time called the "snapshot date"
to give a homogeneous experience. This concept is applied
within the container images thanks to a custom YUM repos-
itory configuration.

Images containing Java Development Kits (JDKs) are
built on top of the acc_cc7 base image in order to run Java-
based software, either with the Oracle JDK 8 or with Open-
JDK 11 (Fig. 2). This is done by running an Ansible play-
book which sets up the relevant Java packages and their
configuration files within a temporary container, then ex-
tracting the resulting directory structure and placing it in a
clean container image.

The overall process is launched every day in a CI/CD
pipeline. It is light enough such that when a new major
version of RHEL/CentOS is available, minimum changes
are required to update the image generation process.

CONTAINER REGISTRY
Though the container registry can be described as simply

as a repository of images, there are specific requirements
that need to be satisfied. It must be able to store internal
images (i.e. base images and containerized applications built
on top), as well as images which come from public registries
like the Docker Hub. Such images can not be pulled directly
from Controls hosts, as they have no access to the Internet,
hence the registry acts as curated proxy in this sense.

For security reasons, pushing images to the registry should
be restricted to a specific process, while pulling should be
done anonymously, allowing easy integration in automated
software deployment processes. Following a market sur-
vey and discussing with other CERN teams working in this
domain, it was decided to use the Harbor registry [7] (Fig. 3).

Harbor deployment is managed by the cloud infrastructure
team within the IT Department. It fulfills the main functional
requirements and it integrates well with additional security
features such as an image validation policy and vulnerability
scanning.

Validation Policy and Vulnerability Scanning
The Controls computing infrastructure team has to find a

balance between delivering a smooth experience to develop-
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Figure 3: The Harbor registry.

ers, and at the same time, enforcing a security policy where
only a certain set of images are allowed.

Figure 4: Image request and validation mechanism.

The Controls computing infrastructure team has designed
a mechanism where developers can call a script which, after
filling appropriate parameters, will create a merge request on
a GitLab repository to add a new image to the Harbor-based
Controls container registry (Fig. 4).

Only images that are relevant for operation are accepted.
Later in the chain, vulnerability scanning is invoked from
the Harbor registry, giving insight on the security status of
the image. In 2021, Trivy [8] is the tool used to perform
these scans (Fig. 5).

CONTAINER ENGINE
When the use of containerization technologies exploded

in the 2010s, Docker was the default choice for a container
engine. Since then, the company behind Docker has adapted
its business model, whereby the use of some products need
to be paid for [9]. This change in policy, combined with the

Figure 5: Scan result of a critically vulnerable image.

potential for a sudden price increase, raises concerns when
it comes to choosing a container engine for Controls, that
must remain stable over the course of a full LHC Run (e.g.
5 years).

Docker revolves around a UNIX daemon running as root.
It creates an additional attack surface on every Controls
host where it would be deployed, and also consumes some
RAM even when no container is launched. It becomes a
single point of failure where containers are children of this
process, and in case of any issues, they become orphans
(PID 1 becomes the parent).

In the meantime, OCI alternatives have emerged, like
Podman [10]. This software is supported by Red Hat and is
included in the RHEL distribution and its derivatives.

Podman does not require a daemon, which addresses the
problems stated above. Being daemonless allows easy inte-
gration with LUMENS, the Controls tool to manage and run
user processes. With only slight adjustments, it is possible to
treat container startup similarly to any other systemd service.

Podman can be configured to run rootless containers,
which means that they run completely within the scope of a
UNIX account. This provides an increased level of security
and practicality, as root may not be involved at all.

Rootless Containers
Even if all the required components are present (i.e. a

recent enough Linux kernel supporting namespaces and the
container engine to use them), some configuration is still
required to enable rootless containers. First, user names-
paces need be enabled. This is done thanks to the the
max_user_namespaces kernel parameter, which is set to 0
by default. A high enough value needs to be set to accommo-
date as many containers as a Controls host can support. At
CERN, this is set to 8192 giving room to run a few hundred
containers.

During the daily Ansible run, which enforces the gen-
eral configuration on Controls hosts, the list of users who
can run rootless containers will be extracted from LDAP.
This list is then written in the /etc/subuid and /etc/subgid
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files in the proper format: <username>:<start of subuid
range>:<number of subuids>. To avoid collisions, subuids
and subgids are calculated by shifting the user ID 8 bits to
the left, and leaving the last 11 bits for subuids and subgids
(Table 1). Therefore, the number of subuids and subgids is
constant for all users: 211 − 1 = 2047.

Table 1: Example of subuid range for a given UID

User ID Beginning of range End of range
1000 1000 << 11 = 2048000 2050047

Finally, user-writable directories in /opt are created to
store images, containers and their metadata. This is done by
again taking the list of relevant users in LDAP, then making
sure these directories exist for each one of them with proper
Ansible tasks.

CONTAINER ORCHESTRATION AND THE
FUTURE OF THE ACCELERATOR DATA

CENTER
Moving Away from Bare Metal

The operation of the CERN Accelerator complex relies
on a dedicated data center that was put in operation for the
LHC start-up in 2008. A total of about 400 high-availability
servers are used for the operation of critical LHC infrastruc-
ture systems such as Cryogenics as well as for all systems
required for beam operation.

Over the years, this critical infrastructure remained as
a 100% bare metal facility. Consequently, each process
required for the operation of the CERN Accelerator complex
runs on a dedicated server with a fixed IP address. So far this
infrastructure offered excellent availability figures, however,
it is clear that it can be optimized to make better usage of
the overall computing power and to be more agile in terms
of hardware maintenance effort (the current annual system
administration effort takes up to 4 days). This is where
virtualization and container orchestration technologies enter
the game.

Relevance of Container Orchestration in Controls
A simple way to summarize container orchestration is that

instead of abstracting a single computer, an entire computing
infrastructure is abstracted. An orchestrator takes care of the
placement, scheduling, scaling, failover and health monitor-
ing of containers. It also provides an API to interact with it,
and accepts input with declarative configuration (generally
in YAML format).

Stateless web services are one of the best use cases for or-
chestrated environments as they benefit from horizontal scal-
ability, redundancy, and load balancing techniques without
manual configuration of additional software like HAProxy
and nginx.

Control systems are usually made of very diverse hard-
ware and software with variety of monitoring and software

deployment methods. Since it is not feasible for Controls
infrastructure to be entirely deployed in orchestrated con-
tainers, it means that multiple deployment and mechanisms
must be maintained, resulting in a growing stack and overall,
a more diverse and complex infrastructure to manage.

Another point of concern is related to security: lots of
institutions prevent their Control systems from directly ac-
cessing the Internet. It means that the orchestrator has to be
physically deployed on-site, and managed by a local team.
While deploying software on orchestrators is convenient and
eases developers’ lives, the underlying infrastructure is quite
complex. It implies dedicating additional time to maintain
it, increasing total costs, unless orchestrated containers com-
pletely replace the legacy stack.

Finally, one of the best selling points for container orches-
tration in industry is complete scalability. When a company
relies on microservices that need to be replicated to manage
sudden load increases, and for which the computing power
can be rented from one of the big cloud providers, it is easy
to understand the interest in this technology. Benefits are
less apparent when servers have to be physically provisioned
on site (i.e. they have a fixed cost), and that computing re-
source don’t need to be regularly redistributed to different
applications over time.

Previous Studies
There were two previous attempts at evaluating container

orchestration for CERN Accelerator Controls in the late
2010s.

In 2018, the LHC Operations software team attempted to
set up Kubernetes clusters to measure the performance of the
LHC Coupling Analysis Service in containers [11]. Despite
the use of infrastructure as code with Ansible, the complexity
of deploying Kubernetes clusters in an environment without
Internet connectivity was clearly highlighted.

Between 2018 and 2019, a study took place in the Acceler-
ator Controls Group to evaluate container orchestration in a
specific context, including the use of Nexus as an image reg-
istry, and creation of a proof-of-concept of base image. The
conclusion, was that in-house deployment of Kubernetes
was dismissed, due to human resources considerations and
incompatibility with the accelerator schedule. Major Kuber-
netes versions were released every three months, whereas
some Control system upgrades cannot be scheduled to take
place more often than once per year. Upgrading Kubernetes
on an annual basis could be quite risky, representing giant
leaps across multiple versions.

CERN IT Container Orchestration Infrastructure
Outside of Controls, OpenStack is used as the backbone

of the CERN IT data center since 2012. The IT container
deployment platform is based on OpenStack technology,
together with an open-source component called Magnum
[12]. Magnum is an Openstack API service developed by the
OpenStack Container Team, with numerous patches from
CERN contributors. It allows to run orchestrators such as
Docker Swarm or Kubernetes. This section will give more
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details on the Kubernetes use case, which is the main or-
chestrator in use. Nevertheless, it is important to note that
Magnum templates can be added for different orchestrators,
without changing the underlying architecture and hardware.

CERN OpenStack [13] offers a self-service solution to get
an orchestrator running in the private cloud. CERN users
can request a cluster with various storage, compute (CPU,
GPU) or traffic routing options. On the storage front, CERN
offers support for CephFS [14], CVMFS [15] and EOS [16],
which are quite different from industry standards.

Magnum can spawn a cluster on virtual machines or the
bare metal infrastructure thanks to the integration with other
OpenStack APIs. Once created, CERN users have full con-
trol on their clusters and can use industry standard tools to
access the Kubernetes APIs and deploy their applications.
Around 650 clusters are running at CERN [17], using around
13,000 cores, 30 TB of RAM and more than 150 PB of local
storage. Under the hood, the operating system is Fedora
CoreOS, which is an automatically-updating, minimal oper-
ating system for running containerized workloads securely
and at scale.

Helm [18] is a package manager for Kubernetes and gives
users the ability to deploy existing sets of containers with
almost no code or knowledge of the underlying infrastructure.
Users are encouraged to store and deploy their applications
using the CERN internal repository.

For monitoring, the IT Department largely relies on
Prometheus [19] for gathering cluster metrics, which is pro-
vided by default. Users can also add their own custom met-
rics.

This paper wouldn’t be complete without a mention of the
HashiCorp product, Nomad [20]. Nomad is a modern, easy
to install and lightweight workload scheduler. By creating
a pool of compute, storage, and networking, Nomad can
decide where it’s most efficient to run tasks. The deploy-
ment consists of a single binary and the built-in task drivers
plug-in allows to run all sorts of workloads to also bring
orchestration benefits to existing services. A few teams in
the IT Department have put in place self-managed solutions
based on the open source version of Nomad.

As shown in this section, container orchestration is a com-
plex subject and requires interactions with a lot of exist-
ing IT infrastructure components. The investment to have
something working in an environment that spans servers,
networks, storage and development processes is very chal-
lenging for small teams.

Container Orchestration and Accelerator Data
Center Management

In 2021, service continuity and recovery is considered
as a high-priority topic with the CERN accelerator domain.
One of the means to achieve this from the computing infras-
tructure perspective, is to allow critical services to easily
recover, by starting them from a different data center.

Accelerator Controls back-end services are provided by
around 400 servers in a single location. IP networks are

physically segmented in the data center, no anycast range is
available, and enabling routing protocols up to the host isn’t
available. Storage is also provided by NFS servers that are
single points of failure.

Prior to introducing technical solutions for computing
service continuity and flexible data center management, it
will be required to invest in an evolution of the network
infrastructure, as well as deploying scalable storage.

The hardware team has identified: key servers to phys-
ically duplicate, required rack space, power consumption,
and expected recovery times from daily backups. It was also
crucial to focus on logical aspects and how services and data
can be transferred, or kept in a working state, when moving
from one data center to another.

Virtualization and container orchestration were analyzed
(Fig. 6). To sum up, all these technologies solve the same
problem which is, providing service continuity in the case
of a catastrophic event in a data center. They also enable
the hardware team to manage servers in a more generic way,
by looking at a global set of systems instead of individual
treatment for each of them. Thanks to virtualization and
container orchestration, physical computing resources can
also be shared, using a logical split for different use cases.
Currently, a team requiring back-end resources needs to ask
for a full server.

While orchestrators provide APIs to deploy applications
and offer features like load-balancing and autoscaling, they
can only be used to host cloud-ready applications. Currently,
only a few use cases of specific Controls sub-systems are
ready e.g. the Machine Learning Platform (MLP) [21] and
the Unified Controls Acquisition and Processing (UCAP).
Stateless web services could be easily transferred as well.
However, many Controls applications would need significant
architectural changes. Also, one third of Accelerator data
center servers are dedicated to running WinCC OA back-
ends to control SCADA systems, and this specific software
won’t be ready for orchestration for some years to come.

From the development and deployment perspective,
CI/CD integration is better with orchestrators, but they imply
rethinking process deployment and monitoring, currently
done using LUMENS. CI/CD integration would be the same
between current servers and potential virtual machines.

Kubernetes, as provided by the CERN IT Department,
runs as a proof-of-concept. It would need further refine-
ments in order to run mission critical applications, such as
the ability to run multiple cluster masters to mitigate the im-
pact of localized hardware failure. Currently, if one server
fails, orchestrated applications still run but can’t be easily
stopped or restarted. Other orchestrators like OpenShift and
Nomad can be deployed at an additional cost, as training /
consultancy for the system administration team would be
needed in order to deploy an optimal setup.

Container orchestration will not avoid the fate of non-
cloud-ready applications in the case of a disaster in the
CERN Accelerator data center. Given the large number
of use cases that cannot be orchestrated in the foreseeable
future, flexibility should come with the use of virtual ma-
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Figure 6: Summary of options for computing service continuity and flexible data center management.

chines, for which floating IPs will allow services to quickly
continue in a second data center.

CONCLUSION
Containerization applies to different concepts and can

be used on two different scales: plain containerization (by
deploying on the current hardware and system stack), and
container orchestration (by generically dedicating computing
power to it).

At CERN, plain containerization is in place with fully
functional base images, a container registry to store images,
as well as a container engine configured to run rootless
containers. It is used for operation and is fully supported.

Orchestration is deployed as a proof-of-concept, with soft-
ware infrastructure provided by the IT Department, but it is
currently not ready to run operational services. Introducing
container orchestration on a massive scale implies a full
review of software development practices. It can be used
as a way to manage a data center in a more flexible manner,
provided that the necessary techniques reach a critical mass
adoption.
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