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Abstract

The ALMA Observatory was inaugurated in 2013; after
the first eight years of successful operation, obsolescence
emerged in different areas. One of the most critical areas is
the control bus of the hardware devices located in antennas,
based on a customized version of CAN bus. Initial studies
were performed to explore alternatives, and one of the candi-
dates can be a solution based on EtherCAT technology. This
paper compares the current architecture with a new proposal
compatible with the existing hardware devices, providing the
foundation for new subsystems associated with ALMA 2030
initiatives. The progress of a proof of concept is reported,
which explores the possibility of embedding the existing
ALMA monitor and control data structure into EtherCAT
frames, using EtherCAT as the primary communication pro-
tocol to monitor and control hardware devices of ALMA
telescope subsystems.

INTRODUCTION

The ALMA Observatory was inaugurated in 2013; after
the first eight years of successful operation, obsolescence
emerged in different areas. One of the most critical areas
is the control bus of the hardware devices located in anten-
nas, based on a customized version of CAN bus. Initial
studies were performed to explore alternatives, and one of
the candidates can be a solution based on EtherCAT [1]
technology. This paper compares the current architecture
with a new proposal not only compatible with the existing
hardware devices, but also provides the foundation for new
subsystems associated with ALMA 2030 initiatives. This
document reports the progress achieved in a proof of concept
that explores the possibility to embed the ALMA monitor &
control protocol into a EtherCAT protocol. The main goal
of this phase is to obtain the technical assessment of the fea-
sibility to implement the EtherCAT as the communication
protocol to monitor and control hardware devices/controller
in all the subsystems that comprises the ALMA telescope.
This is a collaboration project between ALMA Observa-
tory and the Universidad de La Frontera in the context of a
QUIMAL fund (QUIMAL190009) [2], which is sponsored
by Chilean National Agency for Research and Development
(ANID). The main objective is to design, implement and
evaluate an possible alternative of the existing antenna real
time computer.
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THE ALMA DISTRIBUTED CONTROL
SYSTEM

The ALMA control software is a distributed system that is
divided into several subsystems, each focusing on different
stages of the observation process. The subsystems provide
software interfaces to transfer communication messages in
a coordinated manner between them. Likewise, the control
system is also responsible for coordinating, by means of
events and/or command messages, all the activities involved
in the different observation steps.

The main subsystems are Control, Correlator, Scheduling,
Telescope Calibration, Executive and Archive. The software
for each subsystem is implemented in one (or more) pro-
gramming languages (C++, Java, Python) that support the
ALMA common software (ACS) [3], CORBA-based frame-
work. The official operating system is Red Hat Enterprise
Linux Server release 7.6.

The Antenna Bus Master (ABM)

The ABM is a dedicated real-time computer to monitor
and control the antenna hardware devices. The purpose of
this computer is to process low level messages from all an-
tenna devices, using a particular implementation of the CAN
communication protocol [4]. The scheme of monitor and
control conducted by the ABM computer is accomplished
with adoption of the ALMA Monitor Bus (AMB) specifi-
cation. It is a particular ALMA protocol, based on a CAN
bus, to communicate with hardware elements, which defines
a unique master connected with several slaves in the same
bus. The AMB specification promotes a configuration that
converts the transaction of CAN messages in a determinis-
tic communication of the command control messages. The
master, in a timely manner, is the only agent on the bus that
can sends messages and wait responses of the other elements
involved in the CAN bus. Similarly, the ABM make uses of
five independent ALMA Monitor Bus channels to commu-
nicate with the devices spread out in the antenna. In every
channel the ABM real-time computer acts as the CAN mas-
ter and antenna hardware devices are the slaves on the CAN
bus.

Hardware Device Interface (AMBSI)

The ALMA Monitor and Control Bus Interface (AMBSI)
is a standard interface that defines, on the one side the phys-
ical connection of nodes on the bus, and on the other side,
the application level protocol that nodes must conform to be
monitored and controlled by a software control system. The
AMBSI specification outlines that each ALMA device has
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a node address (0-2030), a unique 64 bit serial number, the
ALMA M&C bus (AMB) is a master/slave multi-drop serial
bus. The ALMA specification is implemented in two stan-
dard interfaces, known as the ALMA Monitor and Control
Standard Interface 1 & 2 (AMBSI1, AMBSI2). In addition,
the standard also established that the low level protocol is
Controller Area Network (CAN) serial bus operated in a
master/slave mode by a dedicated bus master. The remote
frame transmission request (RTR) is not used by the bus
master to gather monitor data.

Timing Event

The ALMA software infrastructure synchronizes the activ-
ities with the antennas by a common time base [5]. The time
base definition is based on an electronic pulse signal with a
period of 48 milliseconds, denominated as Time Event (TE)
and absolute Gregorian time associated with each TE. The
time system is provided by group of specialized hardware
elements and software component denominated the Array
Time. It is the main reference time for all machines con-
nected in the ALMA system environment. This is a special
coordination mechanism of the time that enables interac-
tions between participants, in a time synchronized manner,
according to a unique universal time provided by this ded-
icated time scheme. The coordination between different
participants is performed by means of a time events.

The activities of monitor/control of hardware devices are
completed in synchronization with the Time Events (TE).
The Fig. 1 below shows a TE-related control/monitor com-
mand, the processing of this type control command may
begin at the starts of every TE pulse. Any slave (hardware
device) that receives a control command from the CAN mas-
ter (ABM) must processes it in the first 24 ms of TE. In the
same way, monitor commands are processed in a second
window of 20 milliseconds of the 40 ms TE-window.

TEn TEn+1 TEn+2

A A

48 ms

Increasing time 48 ms ticks

control monitor

24 ms 20 ms

Figure 1: Time Event linked with control and monitor com-
mands.

THE PROPOSED DESIGN

The design take into account different parameters of open
standards in control bus. The Table 1 shows the attributes
of EtherCAT, CAN-Bus (CANOpen), RS-232, RS485 bus
standards.

Different scenarios were analyzed for the observatory in
the coming years, and these are the most relevant require-
ments and uses cases in the new control system:
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* monitor and control of the existing hardware devices
of the ALMA telescope.

» monitor and control of new hardware devices to be
introduced mainly due to obsolescence problems.

* monitor and control of new hardware devices to be
introduced by improvement and automation in the an-
tenna remote recovery activities.

» monitor and control of new hardware devices of the
ALMA 2030 developments.

Given the aforementioned scenarios, it was decided
to explore a solution that could combine the EtherCAT,
CANOpen and OPC UA protocols. The new design must
be capable to combine, in the distributed control system,
the different flavors of protocols and interfaces of existing
design and also guarantee the future extension of the this
new design. The resulting architecture must minimize the
impact in the higher control software layer based on ACS.
Additionally, the new design should provide a way to allow
hardware engineers to be able to access the control bus for
maintenance purposes, without the need to have the entire
stack of control software up and running. This is an im-
portant aspect, because it prevent hardware and software
engineers to work in parallel in different areas during the
scarcely available technical time.

ACS
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Figure 2: Control bus use cases in the coming years in
ALMA.

The scenario or use cases displayed in the Fig. 2 are the
following:

ALMA Device Controller

The use case 1: The existing ABM’s functionalities
are separated into two parts. The first part represents the
user-space (no real-time) to be executed in a Linux server
with ACS. The existing "Hardware Device" components are
adapted to use a OPC UA client driver, which sends (via
Ethernet) messages to the second part (real-time) of the pro-
posed system. Finally, an application must be developed to
run within the IPC on top of TwinCAT 3, in order to verify
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Table 1: Control Bus Comparison

EtherCAT CAN-Bus RS232 RS485
Speed/Cable | 100 Mbps at 100 m 1 Mbps at 40 m from §19,200 bpsat15m 1 Mbps at 120 m from
Length between two nodes for full the start to end from the start to en the start to end
speed nodes nodes nodes
Cable Daisy Chain, Point-to- Daisy Chain Point-to-Point Daisy Chain, Point-
Topology Point, Combination of the to-Point
above
Max Number | 65535 128 1 32
of Nodes
Open Source | Yes Most of CANOpen is | No predetermined No predetermined
Software proprietary protocol protocol
Required Regular Ethernet adapter  PCI, USB, IC-type PCI, USB, IC-type PCI, USB, IC-type |
Hardware at interface interface interface
master

the reception of the OPC UA messages and dispatch the
message to the EtherCAT bus.

ALMA Current CAN Bus Device

The use case 2: This is the most important scenario for
ALMA, because it tackles the current obsolescence problem
of ABM real-time computers. In this scenario, the ACS com-
ponents deployed in containers of the Linux Server running
ACS will be able to communicate via EtherCAT with hard-
ware devices connected to the CAN bus. The commands sent
by hardware device component are processed by the OPC
UA server and translated into EtherCAT frames, once the
message is received by an EtherCAT-CAN coupler, it will
converts the messages into the CAN messages compatible
with the current implementation of ALMA control bus.

COTS EtherCAT Coupler with Digital, Analog I/0O

The use case 3: This differentiates from use case 2 because
it includes functionalities to interact with hardware module
which are connected to the E-bus of the EtherCAT master
or another EtherCAT coupler (i.e: Beckhoff ELK1100), for
example, relays, temperature sensors, and servo motor driver,
and encoder modules. This use case is the native usage of
EtherCAT with hardware of the Beckhoff vendor.

EtherCAT Coupler with Customized Electronic

The use case 4: this scenario incorporates a development
of EtherCAT slave that allow to attach customized function-
alities implemented in a micro-controller.

EtherCAT Coupler Interfacing with a Sophisticate
Subsystem

Use case 5: This is a generic case, in principle, it would be
used to adapt future instruments with proprietary protocols
to the EtherCAT infrastructure.

IMPLEMENTATION

It was decided to focus our effort and resource to demon-
strate the use case 0 and use case 2, because their are the

THBLO02
826

most complicated and more likely scenario for the coming
years. The use case 3 poses very low risks and is well demon-
strated already in the industry. The use case 4 and use case
5 are variants of the use case 2.

The EtherCAT-CAN coupler will be implemented on top
of a XMC4800 micro-controller [6], mainly because the
XMC4800 has a MultiCAN controller that could support
up to 5 independent CAN buses. Using the SDK of the
XMC platform, the ALMA customized CAN protocol is
implemented. The choice of the XMC4800 was heavily
influenced by past experience of the team, but any micro-
controller, FPGA with CAN transceivers could also be a
possible alternative.

This design will cover all the different possible scenar-
ios that ALMA may face in the next decade. It allows a
coexistence of the different field bus protocols and a smooth
transition of the existing architecture to a one that could also
support ALMA2030 projects.

As shown in Fig. 3, the testing setup comprises the fol-
lowing equipment: i) a VM with ACS and TwinCAT devel-
opment environment, ii) a Beckhoff CX2030 IPC EtherCAT
master, iii) an Infineon XMC4800 microcontroler EtherCAT
slave, iv) an ALMA AMBSI board representing hardware
device of ALMA.

i B

©) Infineon XMC 4800 board

) VM Cent0S? Windows 10 Pro
+ACS + TWinCAT
Engineering

v

b) Beckhoff CX2030

|=h

Laptop XEON
Ubuntu 18,04 LTS

Figure 3: Physical connection of the test bentch.

The objective is to reproduce the existing communication
between of an ABM and a hardware devices through the
AMBSI interface, but instead sending the customized CAN
frame, the data structure will be embedded into a EtherCAT
Service Data Object (SDO) frame.
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The SDO protocol in EtherCAT allows to configure (write)
and read back values of the Object Dictionary (OD) [7].
It establishes a client-server communication between the
EtherCAT master (client) and a EtherCAT slave (server).
The server (the XMC-4800 microcontroller) exposes an OD
that defines the data structure and the related addresses for
the SDO communication. If the amount of the entries of the
OD requested by the client exceeds the maximum size, The
SDO protocol will segment the data structures in multiples
SDO frames. The simplified version of the OD was shown
in Fig. 4.

=-5001:0 ALMA_CAN_Device1 RO >6¢
5001:01 AMBSI_SERIAL_NUMBER RO 0x10e 14720208007
5001:02 AMBIENT_TEMPERATURE RO 0x10100038 (269484088)
5001:03 PROTOCOL_REV_LEVEL RO 000000000 (0)
5001:04 CAN_ERROR RO 0x000A0000 (655360)
5001:05 TRANS_NUM RO 0x0000017F (383)
5001:06 SW_REV_LEVEL RO (00020000 (131072

Figure 4: Object dictionary.

In order to implement the use case 0 and use case 2, the
data flow described in Fig. 5 was implemented, the main
components are:

OPC UA message

OPC UA Response
()¢

ALMA Network

Figure 5: Data flow of the control bus.

PC
with
ALMA Common
Software

Beckhoff CX-2030
with TWinCAT

EtherCAT response)
Gbessaw 1yoIeu1

Infineon
XMC-4800

OPC UA Device Driver

The existing ALMA software uses Hardware Device
Driver approach, in which according to the type of the hard-
ware controller, the corresponding device driver must be
developed. From the time being, the most common drivers
are the AMBDevice driver and Ethernet Device Driver. For
the OPC UA Device driver, the Ethernet Device Driver was
extended, and additional OPC UA functionalities were added.
As described in Fig. 6 This driver in essentially a OPC UA
client that reads/writes data structure defined in OPC nodes
hosted by an OPC server. For each entry of the OD, there
is a specific node in the OPC server. Within this node, a
sub-node is defined for receiving requests from the client
(AMBMessage), additional the client subscribes itself to a
second sub-node in order to receive the eventual response
(AMBResponse).

TwinCAT Application

A TwinCAT application was developed. This applica-
tion is the EtherCAT master that runs inside of the Beck-
hoff CX2030. As shown in Fig. 7, the main objective of
this application is to serves as a gateway between the OPC
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Figure 6: Data flow: ACS to OPC UA section.

Monitoring/Control
system OPC UA Server

Figure 7: Data flow: TwinCAT to XMC section.

UA interface (external) and the EtherCAT bus (internal).
This application implements the OPC UA server with a tree
of nodes that represents the OD. Upon an reception of a
OPC UA client request, the server queue the corresponding
AMBMessage data structure in the control queue or monitor
queue accordingly. Two messages processors (see Fig. 7)
convert the AMBMessage into SDO data structure and dis-
patch this message in the EtherCAT bus. In addition, a state
machine was implemented in order to separate the dispatch
of messages in the queue according to the definition of the
TE (see Fig. 1): in each windows of 48 ms, the first 24 ms
are reserved for the control requests, and the next 20 ms are
reserved for the monitor requests, then 4 ms of idle period
follows. In each AMBMessage data structure, the address
field maps the sub-index in the OD in a SDO frame. Once
the EtherCAT slave (XMC4800) responds the SDO request,
the data is extracted and filled inside of an AMBResponse
structure which is updated in the corresponding OPC node
in the tree of the OPC Server. The node trigger a notification
to the OPC client (previously registered to this node) and
the data is ready to be retrieved by the OPC client embedded
in the OPC UA Device driver.

EtherCAT Slave (XMC4800)

Inside of the micro-controller XMC4800, as shown in
Fig. 8, an firmware is implemented to forward each SDO [8]
request to the AMBSI card. Upon arrival of an SDO request,
the firmware extract the relevant parameters and create an
ALMA CAN frame and dispatch it in the CAN bus syn-
chronously, once the respond of the AMBSI card returns,
the XMC updates the content in its OD defined its EtherCAT
Slace Controller (ESC), and the next EtherCAT frame will
take care to bring it back to the EtherCAT master.

RESULTS

The aforementioned implementation allow to generate an
end-to-end communication between the logic layer inside of
the ACS component and the hardware device located behind
the AMBSI board by using COTS hardware and software.
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EtherCAT Master
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Figure 8: Data flow: XMC to AMBSI section.

The performance tests consist on sending 10000 messages
of 6 possible monitor points (see Fig. 4).

As shown in Fig. 9, we built a histogram with the time-of-
fly of EtherCAT messages associated with six monitoring
points (sub-index 01 to 06) of a hardware device in an an-
tenna. We used the Wireshark software to analyze the TCP
packets traffic between the CX2030 and the XMC4800. The
packets were processes on a Jupyter notebook to calculate
the time-of-fly of each EtherCAT packet. Given the limi-
tations of the sampling time, it was not possible to obtain
the EtherCAT propagation times. However, we estimated
that it is in the order of nanoseconds, which is negligible for
our measurement as the most time consuming in the com-
munication process is related to the CAN communication
between the XMC4800 and the AMBSI card. The mean
values and the standard deviation of the times of each mon-
itoring point were also calculated and shown in the Fig. 9.
The monitor points defined in the OD at the sub-index 1,3,
and 6 took 200 s in average, while the sub-index 2, 4, and
5 took 400 ps in average. The differences between these two
groups are because the implementation done inside of the
XMC.
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Figure 9: SDO traffic performance.
THBLO02

@ 828

ISSN: 2226-0358

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-THBLO2

CONCLUSION AND FUTURE WORKS

The proposed design demonstrated to be an viable alter-
native to replace the existing control bus in ALMA. Based
on a open standard such as EtherCAT, it offers a ready to use
framework to design the control interface of new hardware
of the ALMA2030 projects, these hardware will behave
as EtherCAT slaves. During the transition period, it was
expected to have a combination of existing CAN based hard-
ware device and EtherCAT based device in operation. This
scenario can be supported by the design proposed in this pa-
per. The feature of having an OPC UA interface between the
Hardware Device Driver and the EherCAT master (replace-
ment of ABM) allows more efficient usage of the technical
time between software engineers and hardware engineers in
the observatory. The hardware engineers don’t need to use
the entire ALMA software for their specific hardware trou-
bleshooting activities, which currently block the software
testing activities of the software engineers in the observa-
tory. Finally, the ALMA ICD definition fits perfectly in the
concept of the OD dictated by the EtherCAT CoE, therefore
minimal impact is expected in the Hardware Device layer.

Nevertheless, the SDO structure suits to the purposes
of Monitoring and Control in the ALMA Control bus, we
believe more performance can be achieved by using the PDO
structure. The SDO can be reserved for setup commands,
and low data rate monitoring points, such as temperature
sensors. But the PDO structure can be reserved for high data
rate monitoring points, such as, vibration sensors, encoders
values, etc. The concept of using PDO is under analysis.
Additionally, the TE infrastructure also needs to be improved
in this design as same as the possibility to use the MultiCAN
infrastructure of the XMC4800. Currently, only one of the
possible six channels are being exploited.

REFERENCES

[1] EtherCAT Technolog Group,
org/default.htm

[2] Proyecto QUIMAL190009,
quimal/

[3] G.Chiozzi, B. Jeram, H. Sommer, et al., “The ALMA common
software: a developer-friendly CORBA-based framework”, in
Proc. SPIE, vol. 5496, pp. 205-218, 2004. doi:10.1117/12.
551943

[4] “CAN Bus Specification 2.0”, Robert Bosch GmbH, 1991.

[5] R. Amestica, B. Gustafsson, and R. Marson, “Time syn-
chronization within the ALMA software infrastructure”, in
Proc. SPIE, vol. 6274, pp. 338-346, 2006. doi:10.1117/12.
670298

[6] XMC4800 32 bit Arm Cortex Microcontroller, https://www.
infineon.com

[7] “EtherCAT Modular Device Profile”, ETG.5001.6220 S (D)
V1.0.5.
https://www.ethercat.org/download/documents/
ETG5001_6220_V1i0i5_S_R_IO-LinkMaster.pdf

[8] “EtherCAT Master Classes”, ETG.1500 D (R) 1.0.2.

https://www.ethercat.org/download/documents/
ETG1500_V1i0i2_D_R_MasterClasses.pdf

https://www.ethercat.

https://cemcc.ufro.cl/

Control System Infrastructure



