
CONTROL SYSTEM MANAGEMENT AND DEPLOYMENT AT MAX IV
B. Bertrand∗, Á. Freitas, V. Hardion, MAX IV, Lund, Sweden

Abstract
The control systems of big research facilities like syn-

chrotron are composed of many different hardware and soft-
ware parts. Deploying and maintaining such systems require
proper workflows and tools. MAX IV has been using Ansible
to manage and deploy its full control system, both software
and infrastructure, for quite some time with great success.
All required software (i.e. tango devices, GUIs...) used to be
packaged as RPMs (Red Hat Package Manager) making de-
ployment and dependencies management easy. Using RPMs
brings many advantages (big community, well tested pack-
ages, stability) but also comes with a few drawbacks, mainly
the dependency to the release cycle of the Operating System.
The Python ecosystem is changing quickly and using re-
cent modules can become challenging with RPMs. We have
been investigating conda as an alternative package manager.
Conda is a popular open-source package, dependency and
environment management system. This paper will describe
our workflow and experience working with both package
managers.

INTRODUCTION
The Controls & IT group, also called KITS, is responsible

for the whole IT infrastructure at MAX IV. This includes
everything from control system hardware and software to
data storage, high performance computing, scientific soft-
ware and information management systems. Within KITS,
the Control System Software team manages all the software
linked to the control system. With the accelerator and 16
beamlines, this represents more than 330 physical and virtual
machines to configure and maintain. Ansible [1] was chosen
for its simplicity of use as detailed in CONFIGURATION
MANAGEMENT OF THE CONTROL SYSTEM [2] and is
a great help to achieve this. The control system is made of
many components that often have dependencies with each
other: tango devices, controllers, GUIs. Building and being
able to deploy each software individually without breaking
another part is not straightforward. This requires some tools
and is exactly why package managers were designed. One of
their role is to keep track of dependencies between packages
to ensure coherence and avoid conflicts. Using a package
manager makes it easier to distribute, manage and update
software.

PACKAGE MANAGEMENT
RPM

The RPM Package Manager [3] (RPM) is the package
management system that runs on Red Hat Enterprise Linux,
CentOS, and Fedora. As CentOS is the default Operating

∗ benjamin.bertrand@maxiv.lu.se

System at MAX IV, using RPM to distribute internal soft-
ware was an obvious choice.

RPM gives us access to a large numbers of high quality
packages from the main CentOS repository and others like
EPEL [4], the Extra Packages for Enterprise Linux. This pro-
vides solid foundation to build on and is one huge advantage
of Operating System package managers.

SPEC file RPM creation is usually based on a SPEC
file [5]. It is the recipe that rpmbuild uses to build an RPM.
It contains metadata like the name of the package, version,
license, as well as the instructions to build the software from
source with all the required dependencies as seen in Fig. 1.

Figure 1: RPM SPEC file (extract).

C++ projects are packaged using a SPEC file. RPM cre-
ation is handled by a GitLab CI [6] pipeline using maxpkg,

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THBL01

Control System Infrastructure

THBL01

819

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



a MAX IV plugin to rpkg [7] for managing RPM packaging
from a git repository.

fpm Most software at MAX IV are written in Python.
setup.py, even if not recommended anymore [8], was the
historical way to package a Python library or application
with setuptools and is still widely used today. fpm [9] is a
command-line program designed to help build packages. It
can take different source types (directory, rubygem, python
package...) and convert them to a target type, most common
being ”rpm” and ”deb”. Using fpm avoids having to write a
SPEC file to create RPM. fpm can take the metadata required
to build a package from the setup.py file.

Figure 2: Example of fpm command.

Figure 2 shows a typical command to create an RPM
from a Python repository. It is automatically run by our Git-
Lab CI pipeline. fpm takes the dependencies defined by in-
stall_requires in the setup.py file and automatically adds the
python36 prefix to match the RPM naming convention. If a
Python application had the following install_requires=[”tau-
rus”, ”PyYAML”, ”pytango”], fpm would create a RPM
with the dependencies python36-taurus, python36-PyYAML
and python36-pytango. If there is a mismatch between the
Python package and RPM name, it is possible to pass extra
arguments using the FPM_FLAGS variable and overwrite
the RPM dependencies, i.e. FPM_FLAGS: ’–no-python-
dependencies -d python36-numpy,python36-dateutil’ could
be used for a package depending on the python-dateutil li-
brary.

With the CentOS Project decision to shift its focus from
CentOS Linux to CentOS Stream [10] and the uncertainty
this created, migration to CentOS 8 was stopped. This forced
us to remain on CentOS 7 and that started to create issues.
CentOS is known for its stability, which is very important,
but can become a problem when recent software are needed.
Sardana [11] version 3 was very difficult to install as RPM
due to the versions of the dependencies required. This is
one of the reason we started to look at alternatives package
managers like conda [12].

Conda
Conda is an open-source package, dependency and envi-

ronment management for any language. It is cross-platform
and runs on Windows, macOS and Linux. By using ana-
conda compilers, binaries created with conda-build can run

on any modern Linux distribution. Being OS independent is
an interesting feature that makes changing OS or migrating
to a new one easier. With RPM, even when upgrading be-
tween two major releases of the same distribution, a rebuild
of all packages is required. It’s not the case with conda. The
same package can be installed on CentOS 7 and 8 or even
Debian.

Anaconda [13], the company behind conda provides some
default channels with a large amount of packages. In the past
years, conda-forge [14] became the de facto channel when
using conda. Conda-forge is a community-led collection of
recipes, build infrastructure and distributions for the conda
package manager. It allows developers to automatically build
recipe in a clean and repeatable way on Windows, Linux
and macOS.

In 2021, the Tango community started to publish tango
packages to conda-forge as mentioned in the THE TANGO
CONTROLS COLLABORATION STATUS [15]. MAX IV
also made available some packages that could be useful to
the community like dsconfig or svgsynoptic2. Creating a
recipe for conda-forge isn’t very difficult but there is a review
process done by volunteers that can take some time. For
internal software we need a faster way to release packages
and we deployed our own internal conda server based on
Quetz [16].

Quetz is an open-source conda packages server. We use it
to proxy external channels, like conda-forge, allowing conda
packages to be installed without internet access. We also
have some local channels to store packages created internally.

One complaint that people have about conda is that it can
be slow. This is true when using large channels, and we even
noticed a quite high memory usage (Fig. 3).

Figure 3: Sardana env creation with conda-forge.

The list of packages available in a channel is stored in a
repodata.json file. It includes the description of all packages
and their dependencies. That file needs to be downloaded
and parsed to resolve an environment. The bigger that file,
the more work for conda. As packages are never removed
from a channel like conda-forge, the repodata.json file keeps
growing. It is about 141MB today for the conda-forge linux-
64 channel.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THBL01

THBL01C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

820 Control System Infrastructure



One way to improve performances is mamba [17], a re-
implementation of conda in C++ for maximum efficiency.
It was conceived as a drop-in replacement for conda, using
libsolv for much faster dependency solving. Mamba is robust
and fast (Fig. 4) but not 100% compatible with conda yet,
especially for conda-env commands, meaning we couldn’t
rely on it for all operations.

Figure 4: Sardana env creation with mamba.

As conda performances depend on the channel size, we
created our own local mini-conda-forge channel, a subset
of conda-forge. Having a channel with only the packages
we are interested in gives a big boost in performances, both
in time and memory usage (Fig. 5). Using that channel,
instead of conda-forge, solving an environment with sardana
decreases the time from over 35 seconds to 1.4 seconds and
memory usage from 1.2GB to only 45MB! The result is
almost identical to using mamba. Note that those figures
don’t take into account the download of the repodata file,
that was already cached, nor the download and installation
of the packages.

Figure 5: Sardana env creation with mini-conda-forge.

To keep this channel up-to-date automatically, a GitLab
CI pipeline is run on schedule every night. It downloads
new packages, and their dependencies, from conda-forge
and uploads them to mini-conda-forge. The packages to
download are based on a list of environments we want to be
able to install, that is defined in a text file (Fig. 6). Making
new packages available only requires to update this packages
specs file.

Figure 6: Example of mini-conda-forge environments list.

Building a conda package requires a recipe, which is de-
fined in a meta.yaml file, with the information needed to
create the package. This is equivalent to the SPEC file for
RPM. Figure 7 is a typical example of a pure Python package
on conda-forge.

Figure 7: conda-forge recipe.

To package software we develop internally we decided it
was easier to make the conda recipe part of the source repos-
itory. This removes the need to have a second repository to
maintain. Figure 8 shows an example.

conda-build provides a macro to parse the setup.py file. It
can be used to get the version from that file as well as the
runtime dependencies, making it easier to write and maintain
the recipe.

Our GitLab CI pipeline template will automatically build
and upload the conda package to our Quetz server if it detects
a recipe/meta.yaml file in a repository.

ANSIBLE
Ansible was chosen early at MAX IV as the solution to

deploy and manage the control system.

RPM Deployment
Ansible has a builtin yum module to manage packages

with the yum package manager. This makes it easy to deploy
RPM. For ease of use and consistency, a generic playbook
was created to deploy internal software packages with RPM.
The packages_stable and packages_testing variables define
the list of packages to be deployed. Those variables are
maintained in the Ansible inventory in the proper group or
host variables file. The default version for each package is

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THBL01

Control System Infrastructure

THBL01

821

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



Figure 8: local recipe.

centralized in the all group for consistency (Fig. 9a). Devel-
opers are encouraged to use this default version but can also
pin it if needed or even use latest (Fig. 9b).

(a) versions definition.
(b) packages definition.

Figure 9: RPM packages - Ansible inventory.

Conda Deployment
Ansible doesn’t have any builtin module to interact with

conda. MAX IV has its own modules (Fig. 10) based on the
ones developed by ESS [18].

• The conda module can install, update or remove conda
packages. It works with a list of conda packages.

• The conda_env module manages environment using an
environment.yml file.

Mamba is used by default by the conda module but it’s
currently not compatible with the conda_env one.

(a) conda module. (b) conda_env module.

Figure 10: Ansible modules

Our ans_maxiv_role_conda Ansible role installs and con-
figures both conda and mamba. It can also be used to create
a list of conda environments by setting the conda_envs vari-
able in the inventory. Conda environments are isolated by
nature. You usually have to activate one to use it. To be
transparent for the users, the role can create wrappers for
command line applications. The wrapper is a simple script
that activates the environment and runs the command from
the env. Wrappers are deployed under /usr/local/bin.
Users don’t have to know that the application they run is
installed in a conda environment. Figs. 11 and 12 show how
to define such an environment and the resulting wrapper.

Figure 11: conda_envs definition.

Figure 12: /usr/local/bin/silx wrapper.

Conda is also used to deploy Sardana version 3. A specific
Ansible role and playbook were developed to deploy it based
on an environment.yml file. This format allows to define
both conda and Python packages (installed with pip). The
yaml file is created from a template defined in the role and
can be customized, to add extra packages, based on different
variables in the inventory. Figure 13 shows an example of
such a resulting environment. Wrappers are also installed
under /usr/local/bin for all sardana commands to make
them globally available.

CONCLUSION
Using a package manager to build, distribute and update

software is a requirement in modern software development,

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THBL01

THBL01C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

822 Control System Infrastructure



Figure 13: Sardana environment.

as git is for version control. There are different kinds of pack-
age managers that all have their strengths and weaknesses.
RPM is by nature integrated with the OS. It’s very stable and
can be used to create systemd services for example. Conda is
OS independent and creates isolated environments, avoiding
the risk of dependencies conflicts, and giving more freedom
in the packages that can be installed. Ansible, combined
with RPM or conda, gives us a reliable and reproducible way
to deploy and maintain the control system.

REFERENCES
[1] Ansible, https://docs.ansible.com/ansible/

latest/index.html

[2] V. Hardion et al., “Configuration Management of the Control
System”, in Proc. ICALPECS’13, San Francisco, CA, USA,
2013, paper THPPC013.

[3] RPM Package Manager, https://rpm.org

[4] EPEL, https://docs.fedoraproject.org/en-US/

epel/

[5] SPEC file, https://rpm-packaging-guide.github.
io/#what-is-a-spec-file

[6] GitLab CI/CD, https://docs.gitlab.com/ee/ci/

[7] rpkg, https://docs.pagure.org/rpkg/index.html

[8] Packaging Python Projects, https://packaging.

python.org/tutorials/packaging-projects/

#configuring-metadata

[9] fpm, https://fpm.readthedocs.io

[10] CentOS Stream, https://blog.centos.org/2020/12/
future-is-centos-stream/

[11] Sardana, https://sardana-controls.org

[12] Conda, https://conda.io

[13] Anaconda, https://www.anaconda.com

[14] Conda-Forge Community, “The conda-forge Project:
Community-based Software Distribution Built on the
conda Package Format and Ecosystem”, Zenodo, 2015.
doi:10.5281/zenodo.4774216

[15] A. Götz et al., “The Tango Controls Collaboration Status
in 2021”, presented at ICALPECS 2021, Shanghai, China,
2021, paper WEAR01, this conference.

[16] Quetz, https://quetz.readthedocs.io

[17] Mamba, https://mamba.readthedocs.io

[18] ESS conda Ansible modules, https://gitlab.esss.lu.
se/ics-ansible-galaxy/ics-ans-role-conda

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THBL01

Control System Infrastructure

THBL01

823

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I


