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Abstract
At the Helmholtz-Zentrum Berlin (HZB), user facility

BESSY II Machine Learning (ML) technologies aim at ad-
vanced analysis, automation, explainability and performance
improvements for accelerator and beamline operation. The
development of these tools is intertwined with improvements
of the prediction part of the digital twin instances at BESSY
II [1] and the integration into the Bluesky Suite [2, 3]. On the
accelerator side, several use cases have recently been identi-
fied, pipelines designed and models tested. Previous stud-
ies applied Deep Reinforcement Learning (RL) to booster
current and injection efficiency. RL now tackles a more
demanding scenario: the mitigation of harmonic orbit per-
turbations induced by external civil noise sources. This
paper presents methodology, design and simulation phases
as well as challenges and first results. Further ML use cases
under study are, among others, anomaly detection prototypes
with anomaly scores for individual features.

MOTIVATION
The complexity of a large-scale facility such as the light

source BESSY II in Berlin-Adlershof represents a perfect
benchmark for the development, implementation and testing
of Machine Learning (ML) tools due to the enormous set of
use cases that can be identified - some of which were already
presented in [4]. An important factor in order to prioritise
these applications is the added value that might be gained
through ML, which is enormous in the two cases presented
in this paper.

We will first focus on a very challenging application: the
mitigation of harmonic orbit perturbations. In this case
ML tools aim to improve existing correction systems in the
frequency domain (beyond the possibilities of current ana-
lytical methods), seeking an increase of the electron beam
stability - a critical factor in order to achieve light radiation
with high quality brilliance and brightness over time. Be-
sides we will also further introduce original developments
towards an anomaly detection system with feature anomaly
assignation. This automatic system might extend existing
preprogrammed alert system in BESSY’s control room and
provide additional support to human operators.

MITIGATION OF HARMONIC
ORBIT PERTURBATIONS

At the light source BESSY II, the stability of the orbit
in the storage ring (within the transverse beam dimensions
100 × 20 µm) is currently pursued with a system called Fast
Orbit Feedback (FOFB, [5]) running at 150 Hz. FOFB cor-
rection is based on the linear approximation Δx ≈ 𝑆Δc with
∗ luis.vera_ramirez@helmholtz-berlin.de

x relative beam position, c corrector magnets strength and 𝑆
the so-called response matrix (calculated or measured at the
accelerator). Hence, for x𝑡+1 = 0 we can apply recursively
c𝑡+1 ∶= c𝑡 − 𝛼𝑆−1x𝑡 with 𝑆−1 Moore-Penrose pseudoinverse
of 𝑆 and 𝛼 positive constant (at BESSY 𝛼 = 0.8).

FOFB manages to correct orbit perturbations due e.g. to
imprecisions of the magnet positioning in a very efficient way.
But beyond that, there are several external elements such
as civil noise, main power at 50 Hz and some imperfectly
isolated magnetic sources (e.g. booster power supply at
10 Hz) that also produce additional inherent perturbations
(see Fig. 1). The correction induced by the FOFB system
(Fig. 2) is able to mitigate perturbations at lower frequencies
(less than ca. 15 Hz) but beyond that point the FOFB system
is not that effective and even induces further perturbations
(especially in the region 20-40 Hz).

Figure 1: Horizontal beam motion spectra between injec-
tions without FOFB (cumulated along 22/04/20, BESSY
Archiver data).

Figure 2: Horizontal beam motion spectra between in-
jections with FOFB (cumulated along 13/05/20, BESSY
Archiver data).

A first approach to face this problem was proposed, imple-
mented and tested with simulations in [6]: an explicit correc-
tion of the 10 Hz perturbation with a inverse wave and an im-
provement of the PID correction coefficients (proportional-
integral-derivative response) in the FOFB algorithm. In this
work, we explore the application of ML techniques (in par-
ticular Reinforcement Learning, RL) in order to extend the
analytical approach with an agent that learns the dynamics
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of the system through observation and interaction directly
at the machine.

Chronology
• Early 2020: first RL tests with simulations (code from

[6] and OCELOT [7]). These feasibility tests showed
that a RL agent acting in time domain with a proper con-
figuration should be able to also reduce perturbations
in frequency domain.

• July 2020: infrastructure set-up during machine com-
missioning and first plausibility tests of the Bluesky-
based framework ([2]) up to 20 Hz ([3]).

• September 2020: direct zmq-communication with the
mBox (fast orbit correction infrastructure), communi-
cation up to 100 Hz. First learning results.

• Since February 2021: zmq-communication improved,
stable RL-interaction loop at 75 Hz, further attemps at
150 Hz.

Baselines
In all the experiments presented in this section, we will

compare the performance of our models with three different
baseline correction systems:

• Static steerers: steerers set back to the initial strength,
precalculated with the slow correction system ([8]).
The performance of this baseline varies due to machine
drifting.

• FOFB: standard FOFB system for orbit correction at
BESSY II ([5]). For comparison we took a 5-minute
period at the end of the corresponding learning tests.

• FOFB (zmq): reimplementation of the response-matrix
correction (conditioning 0.04) synchronized with the
zmq loop.

Model-Free Approach
The first approach that was tested in BESSY’s control

room was a direct translation of the simulations carried out
during 2020: the orbit correction is completely undertaken
by a RL agent learning and interacting in time domain in a
model-free way - i.e. no explicit modelling of the environ-
ment is learnt, only the optimisation dynamics. According
to the simulations, this agent should also be able to stabilise
the orbit in frequency domain.

Following our positive experiences in [4] the chosen al-
gorithm was Deep Deterministic Policy Gradient (DDPG,
[9]). DDPG is a well-known deep-RL algorithm for con-
tinuous environments based on the update of the so-called
action-value function 𝑄 ∶ 𝑆 × 𝐴 → ℝ with deterministic
target policy 𝜇 ∶ 𝑆 → 𝐴, where 𝑆 denotes the state space
and 𝐴 the action space. In the DDPG agent proposed in [9],
both 𝑄-function and policy are approximated with neural
networks - a so-called deep actor-critic architecture. The
detailed hyperparameter configuration used in our tests can
be found in the Appendix.

Regarding the environment settings, we defined the state
as the last observation of 6 beam position monitors (BPMs)
along the ring measured in mm (Δ’s w.r.t. the reference

orbit). On the other side, we define the action as the strength
of 6 horizontal steerers along the ring modified up to ±
20 mA (Δ’s w.r.t. the initial stregth). The picked BPMs
and steerers are those presenting higher absolute values in
the response matrix - i.e. those presenting higher linear
correlation. Finally, among the many different definitions
tested for the reward function, we are presenting the most
minimalistic and the most ambitious cases so far.

Reward defined for a single BPM: In our first tests,
conceived as a proof-of-concept, the reward was defined
through a exponential transformation of the deviation of the
next reading from BPMZ5D7R:

2𝑒−𝛽 |𝑥𝑡+1| − 1

with 𝛽 positive constant (for this experiment 𝛽 = 20). This
BPM was picked because it is used as reference for the beam
motion supervision at BESSY II. During this experiment the
machine was set in decay mode starting at ca. 20 mA and
the zmq-communication was carried out at 75 Hz.

Figure 3 shows the evolution of the beam deviation (in
this case measured at a single BPM) during the whole ex-
periment. It alternates exploration periods with baselines
and exploitation periods, and the convergence can be easily
perceived. Figure 4 carries out the comparison of the last
baseline and exploitation period of the experiment with a
subsequent FOFB running in comparable machine condi-
tions. One can see that the agent achieves better results in
time domain (for this single BPM) than any baseline.
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Figure 3: Beam deviation (RMSE) during the whole learning
process (test with BPMZ5D7R, 1/3/21, Archiver data).
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Figure 4: Comparison of the beam deviation (RMSE) after
learning (test with BPMZ5D7R, 1/3/21, Archiver data).

If we switch to frequency domain with the reference beam
motion measurement at BESSY II (Figs. 5 and 6), we can see
that the RL agent carries out the correction of the beam posi-
tion in a smooth way: beyond 20 Hz it improves the stability
of standard FOFB and, although it does not manage to cor-
rect the inherent harmonic perturbations, it does not add any
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extra perturbations either, as both FOFB implementations
do.
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Figure 5: Mean horizontal beam motion spectra comparison
(test with BPMZ5D7R, 1/3/21, Archiver data).
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Figure 6: Integrated mean horizontal beam motion spectra
comparison (test with BPMZ5D7R, 1/3/21, Archiver data).

Nevertheless, if we carry out an additional frequency ana-
lysis through the spectra of the beam motion RMSE with
data gathered during the experiment (Figs. 7 and 8), we
can observe a reduction of the harmonic perturbations (in
norm). In this case, FOFB baseline can not be plotted since
the data was obtained through the zmq-loop in real time and
no comparable data for FOFB can be hence obtained.
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Figure 7: RMSE spectra compasion (test with BPMZ5D7R,
1/3/21, on-the-fly data).
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Figure 8: Integrated RMSE spectra compasion (test with
BPMZ5D7R, 1/3/21, on-the-fly data).

Reward defined for all BPMs: Now we redefine the
reward as an exponential transformation of the RMSE of the
next BPM observation for all active BPMs (m = 102):

2𝑒−𝛽 RMSE[x𝑡+1] − 1 = 2𝑒−𝛽
√ ∑𝑚

𝑖=1 (𝑥𝑖
𝑡+1)

2

𝑚 − 1

with 𝛽 positive constant (here also 𝛽 = 20). This is indeed
a much more challenging case for the RL agent (recall that
it is only observing 6 BPMs and acting on 6 steerers). In
this case the machine was also set in decay mode at ca.
20 mA but the zmq-loop was carried out at 150 Hz, bringing
more correction power but also some instabilities in the
communication.

Figure 9 shows the evolution of the beam deviation
(RMSE for all BPMs) during the whole experiment. In this
period the machine suffered from drifting, which made the
learning process even more difficult, affecting the baselines
as well; Nevertheless, convergence can be also perceived. In
the comparison showed in Fig. 10 we can see that this time
the agent improves the beam deviation but does not manage
to beat the FOFBs in time domain - probably the 6 steerers
might not be enough for the global correction.
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Figure 9: Beam deviation (RMSE) during the whole learning
process (test with all BPMs, 1/3/21, BESSY Archiver data).
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Figure 10: Comparison of the beam deviation (RMSE) after
learning (test with all BPMs, 1/3/21, BESSY Archiver data).

On the other side, this experiment’s outcome is more
positive in frequency domain (Figs. 11 and 12): in the region
between ca. 18 Hz and 50 Hz it improves the stability of all
baselines, including the static steerers - meaning that the
inherent perturbations get also slightly mitigated.

The additional frequency analysis through the spectra of
the beam motion RMSE (Figs. 13 and 14) shows an even
stronger reduction of the harmonic perturbations (in norm).

A natural question might be if the reason for stability in
frequency domain is a low activity of the steerers when they
are controlled by the RL agent. Figure 15 shows that it does
not seem to be the case - the 6 steerers manipulated by the
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Figure 11: Mean horizontal beam motion spectra compari-
son (test with all BPMs, 1/3/21, BESSY Archiver data).
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Figure 12: Integrated mean horizontal beam motion spectra
comparison (test with all BPMs, 1/3/21, BESSY Archiver
data).
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Figure 13: RMSE spectra compasion (test with all BPMs,
1/3/21, on-the-fly data).
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Figure 14: Integrated RMSE spectra compasion (test with
all BPMs, 1/3/21, on-the-fly data).

agent present active motion patterns, which remind of the
beam motion perturbations they are supposed to counteract.

Towards a Model-Based Approach
Previous experiments with a model-free RL agent were

able to carry out sensible orbit corrections in frequency do-
main. Nevertheless, in time domain traditional algorithms
still have a major advantage when the target involves the
correction of all BPMs: the need to include more horizontal
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Figure 15: Steerers motion spectra with RL agent (test with
all BPMs, 1/3/21, on-the-fly data).

steerers implies an increase of the action space dimensional-
ity and complicates the convergence of the RL agent.

In this sense, an optimal set up might be a combination be-
tween global response-matrix-based correction ”smoothed”
with RL for the frequency domain. Our first attempts in
this direction (RL agent action added to or introduced into
the global response-matrix correction) were not successful -
probably because the dynamics of the environment got more
complicated to learn with the standard model-free RL loop.

As a consequence, we have started exploring some model-
based approaches. The idea is to encapsulate the dynamic
system induced by the harmonic perturbation patterns within
a surrogate model that can be used for combination with the
response-matrix-based correction but also for policy training
in a model-based RL context. We seek hence a surrogate
model in the form

𝐹 ∶ ℝ𝑛×𝑚 × ℝ𝑙 ⟶ ℝ𝑚

(x𝑡−𝑛, … , x𝑡, c𝑡+1) ⟼ x𝑡+1

where 𝑛 is the window size, 𝑚 the number of BPMs and 𝑙
the number of steerers.

In our first tests of this approach at the machine, the role
of surrogate model was undertaken by a neural network
whose architecture is sketched in Fig. 16. This network was
directly fed with real data obtained via zmq in real-time
interaction with the machine: random steerer strengths were
set sporadically and the BPM response to these modifications
was tracked. But since the steerer modifications were carried
out slowly (see Appendix), the (windowed) BPM data also
included the inherent harmonic perturbations.

Input: BPMs
n = 10, m = 100 

Dense
10 × 2000 

Dense
10 × 1000 

Dense
10 × 500 

Input: steerers
l = 48

Flatten & 
Concatenate

5048 

Dense
200

Output
100

Figure 16: Surrogate model architecture schema.

Table 1 shows that system dynamics were accurately learnt
by the model. In this table, model prediction error on unseen
test data is compared with several baselines: average of the
test data, previous observations in the test data (x𝑡, x𝑡−1,x𝑡−2,
x𝑡−3 and x𝑡−4) and prediction obtained by the application of
the response matrix: x𝑡+1 ≈ x𝑡 + 𝑆(c𝑡+1 − c𝑡).
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Table 1: Surrogate Model and Baseline Prediction Errors

Error Test Set Avg. Previous BPM Data Resp. Matrix: Model:
x𝑡 x𝑡−1 x𝑡−2 x𝑡−3 x𝑡−4 x𝑡 + 𝑆 (c𝑡+1 − c𝑡) 𝐹(x𝑡−9, … , x𝑡, c𝑡+1)

RMSE 0.0154 0.0274 0.0178 0.0236 0.0204 0.0229 0.0098 0.0036
𝑅2 0 -2.172 -0.3455 -1.3492 -0.769 -1.2223 0.5896 0.9441

The impressive performance of the surrogate model en-
couraged us to embed it into an algorithm (sketched as Al-
gorithm 1) where its prediction accuracy is used in order
to recursively improve the correction given by the response
matrix pseudo-inverse. In each iteration, the implicit linear
prediction calculated with the response matrix is replaced by
the model prediction, which takes into account the inherent
orbit perturbations that are not captured by the measured
response matrix.

Data: 𝑆 response matrix, 𝑆−1 response matrix
pseudoinverse, x𝑡 current BPMs, c𝑡 current
steerer strengths (corrections), 𝐹 surrogate
model

𝑐0
𝑡+1 ∶= c𝑡 − 𝛼𝑆−1x𝑡

repeat
x𝑘

𝑡+1 ∶= x𝑡 + 𝑆(c𝑘
𝑡+1 − c𝑡)

x̃𝑘
𝑡+1 ∶= 𝐹(x𝑡−𝑛, … , x𝑡, c𝑘

𝑡+1)
c𝑘+1

𝑡+1 ∶= c𝑡 + 𝛼𝑆−1[ − (x̃𝑘
𝑡+1 − x𝑘

𝑡+1) − x𝑡]
until convergence or 𝑘 too large

Algorithm 1: Combination of surrogate model and response-
matrix-based correction.

A test run at the machine of Algorithm 1 (300 mA in
decay mode, 150 Hz, 𝑘 = 1) can be visualised in Figs. 17,
18 and 19. Notice that the algorithm is directly constructed
over the baseline FOFB (zmq), and the results are coherent
with its theoretical construction: the performance in time
domain is quite similar to FOFB (zmq)’s, whereas it is much
more stable in frequency domain.
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Figure 17: Comparison of the beam deviation (RMSE) af-
ter learning (test with surrogate model, 21/6/21, BESSY
Archiver data).

Interpretability: A major advantage of the model-
based approach we are seeking is the possibility of a more
direct interpretability analysis. As an example, we want
to briefly analyse the behaviour of the surrogate model 𝐹
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Figure 18: Mean horizontal beam motion spectra compari-
son (test with surrogate model, 21/6/21, BESSY Archiver
data).
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Figure 19: Integrated mean horizontal beam motion spectra
comparison (test with surrogate model, 21/6/21, BESSY
Archiver data).

trained in the previous section. Recall that 𝐹 is a neural net-
work with ReLU and linear activation functions; it means that
𝐹 is differentiable almost everywhere and with the help of
Tensorflow’s automatic differentiation we can approximate
its jacobian w.r.t. the steerer strengths:

𝐽𝑐 ∶=
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝜕𝐹1

𝜕𝑐1
𝑡+1

⋯ 𝜕𝐹𝑚

𝜕𝑐1
𝑡+1

... ⋱
...

𝜕𝐹1

𝜕𝑐𝑙
𝑡+1

⋯ 𝜕𝐹𝑚

𝜕𝑐𝑙
𝑡+1

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

An averaged evaluation of matrices 𝐽𝑐 with test data
(approximating 𝔼(x𝑡−𝑛,…,x𝑡,c𝑡+1) ∼ test data[𝐽𝑐 ∣(x𝑡−𝑛,…,x𝑡,c𝑡+1) ])
can be visualised in Fig. 20. Notice that, as expected, the
matrix structure is almost identical to the measured response
matrix (Fig. 21).

Furthermore, a visualisation of the standard deviation
of the evaluated matrices 𝐽𝑐 (Fig. 22) gives us additional
insights about which steerer-BPM interactions are captured
by the surrogate model 𝐹 in a more non-linear way: those
entries presenting higher variance in the set of evaluated
𝐽𝑐’s.
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Figure 20: Average of matrices 𝐽𝑐 evaluated at 4000 test
points.
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Figure 21: Horizontal response matrix measured at BESSY
II (February 2021).
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Figure 22: Standard deviation of matrices 𝐽𝑐 evaluated at
4000 test points.

ANOMALY DETECTION WITH
FEATURE ASSIGNATION

The use of anomaly detection algorithms for accelera-
tor parameters is another field in current development at
BESSY II. In particular we have started experimenting with
Isolation Forests [10], whose simple and elegant foundations
(outliers as points with short path lengths) have allowed us
to develop additional anomaly scores that can be individ-
ually assigned to the input features. Our feature anomaly
scores are conceived online and complement the information
given by the global anomaly score: They should evaluate
how anomalous the features of the current observation are.
The idea is based on the philosophy of feature importance
for fully randomized trees in [11] and similar to LFI in [12].
The results are comparable to SHAP [13] but with much
better time performance for large data sets.

Given a point 𝑥, its node path in 𝑖-th tree 𝑇𝑖 will be denoted
as 𝒫𝑖(𝑥) = {𝑁0, 𝑁1, … , 𝑁𝑙}. Notice that 𝑁0 will be the root
node and 𝑁𝑙 a leaf. For each node 𝑁 in 𝑇𝑖 let 𝑠(𝑁) denote
the number of samples assigned to this node after training.

We can hence define a splitting path of a given point 𝑥 in 𝑇𝑖
that tracks the reduction of training samples along the path

𝒮𝑖(𝑥) ∶= {(1 −
𝑠(𝑁𝑗+1)
𝑠(𝑁𝑗)

)
𝑝
}

𝑁𝑗,𝑁𝑗+1 ∈ 𝒫𝑖(𝑥), 𝑗=1,…,𝑙

with 𝑝 > 0 sparsity coefficient. If we denote as 𝐹(𝑁𝑗) the
feature used for splitting at node 𝑁𝑗 with 𝑗 = 0, … , 𝑙 − 1, we
can assign to it the 𝑗-th quantity within 𝒮𝑖(𝑥). Therefore,
given a point 𝑥 and a feature 𝐹, we can define their anomaly
score at tree 𝑇𝑖 as

𝑎𝑖(𝐹, 𝑥) ∶= ∑𝑗{𝑠𝑗 ∈ 𝒮𝑖(𝑥) ∣ 𝐹(𝑁𝑗) = 𝐹}

and extend it naturally to all trees in the forest:

𝑎(𝐹, 𝑥) ∶= 1
𝑘 ∑𝑘

𝑖=1 𝑎𝑖(𝐹, 𝑥)

Figure 23 shows an anomaly detection application proto-
type including these feature anomaly scores and conceived
as a first proof-of-concept. It corresponds to an isolation
forest trained with ca. 125k data points along three weeks
from 22 BESSY’s top-up variables. Once the model has
been trained, the application starts evaluating data points
read in real-time and detects a decay of the global anomaly
score, mainly assigned to a single variable (booster current
per bunch). This value was indeed anomalous according to
BESSY’s predefined alert intervals; The algorithm had been
able to recognize it without any previous information about
these intervals.

Figure 23: Screenshot of the live application for anomaly
detection at BESSY II: An anomaly score decay (lower right
plot) is assigned in real time to the booster current per bunch
(first bar in the upper plot).

CONCLUSION
The central use case presented in this paper (mitigation of

harmonic orbit perturbations) was firstly faced with a model-
free deep RL agent working with 6 BPMs and horizontal
steerers that, as expected, improved stability in frequency
domain but does not overcome traditional global methods in
time domain. First steps towards model-based global optimi-
sation with all 100 BPMs and 48 horizontal steerers keeping
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the time domain correction quality and improving also sta-
bility in frequency domain were introduced as well. These
first model-based approaches are based on very accurate sur-
rogate models encapsulating the inherent perturbations of
the orbit. Finally, we have introduced further original ideas
and a proof-of-concept for anomaly detection with feature
assignation, whose first prototypes are ready for integration
at the machine.

APPENDIX
• Frameworks: [14–16]
• DDPG - Hyperparameters:

– Actor: feedforward network with three hidden
layers (50-20-10 neurons), ReLU as activation
function (output with tanh)

– Critic: feedforward network with four hidden
layers (50-(50+action)-20-10) neurons, ReLU as
activation function, Adam as optimizer

– Learning: 𝛾 = 0.99, target model update rate
= 0.01, batch size = 32

– Exploration: Ornstein-Uhlenbeck process (𝜎 =
0.05, 𝜃 = 0.1, no annealing), memory buffer with
20000 steps, short episodes (50 steps) followed
by steerers random restart.

• Surrogate model correction - Hyperparameters:
– Model: architecture plotted in Fig. 16, ReLU as

activation function, linear output, Adam as opti-
mizer

– Learning: 16000 points for training, 4000 for test
(gathered at 150 Hz), validation split 0.05, batch
size = 32, 50 epochs.

– Steerer randomisation: steerer intensities sam-
pled from 𝒩(0, 5) (in mA) and actually set with
probability 𝑝 = 0.005.
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