18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-MOPVO50

DevOps AND CI/CD FOR WinCC
OPEN ARCHITECTURE APPLICATIONS AND FRAMEWORKS

R. P. I. Silvola, CERN, Geneva, Switzerland
L. Sargsyan, A. Alikhanyan National Laboratory (former YerPhl), Yerevan, Armenia

Abstract

This paper presents the Continuous Integration and Con-
tinuous Deployment (CI/CD) tool chain for WinCC Open Ar-
chitecture applications and frameworks developed at CERN,
enabling a DevOps oriented approach of working. By iden-
tifying common patterns and time consuming procedures,
and by agreeing on standard repository structures, naming
conventions and tooling, we have gained a turnkey solution
which automates the compilation of binaries and generation
of documentation, thus guaranteeing they are up to date and
match the source code in the repository. The pipelines gener-
ate deployment-ready software releases, which pass through
both static code analysis and unit tests before automatically
being deployed to short and long-term repositories.

The tool chain leverages industry standard technologies,
such as GitLab, Docker and Nexus. The technologies chosen
for the tool chain are well understood and have a long, solid
track record, reducing the effort in maintenance and potential
long term risk. The setup has reduced the expert time needed
for testing and releases, while improving the release quality.

INTRODUCTION

The CERN Industrial Control Systems Group of the
Beams Department (CERN BE/ICS) [1] provides support
and software solutions to the SIMATIC WinCC Open Archi-
tecture (WinCC OA) [2] community for setting up SCADA
applications. This includes general infrastructure (cryogen-
ics, electricity, radiation protection, etc) as well as controls
for the experiments, and associated institutes. The group
provides a CERN specific distribution of WinCC OA, repack-
aging the software released by ETM Professional Control, a
Siemens AG subsidiary. In addition, the group develops and
maintains WinCC OA applications, as well as frameworks
for building such applications, and for connecting them to
the CERN IT infrastructure.

The WinCC OA software catalogue supported by the
group spans hundreds of applications and two frameworks
composed of a large set of components, totalling up to mil-
lions of lines of source code written in multiple languages,
including C++, PL/SQL, CTRL — which is a WinCC OA
proprietary scripting language, and others. Many of these
projects are required to run on both Linux and Windows,
increasing their complexity.

While the code itself has always been kept in a central
repository, the procedures for building a release, includ-
ing compilation, packaging and deployment to our package
repositories, were left to the developer in charge of each in-
dividual project. This approach meant that each component
was built in a different way, and releases were only possi-

Software Technology Evolution

ble to be done when the expert was present. Much of this
was standardized by the introduction of ARES [3], yet the
approach taken was in a way upside down, requiring many
manual steps for releases, leading to automated commits to
the repository. This required developers to change contexts
each time a release was to be prepared, be it for validation
or for production, and the automated commits resulted in
unnecessary pollution of the commit log, making it hard to
read.

While ARES greatly simplified and automated releases,
there was a disconnect between development and releases.
The tools used for the release infrastructure were based on
technologies poorly understood by framework developers,
which lead to recurrent delays while debugging issues as
the ARES expert intervention was required. The tooling,
while advanced, was designed with Java projects in mind,
which differ radically from WinCC OA and Frameworks
development.

To alleviate these issues, a deep look was taken into the
development processes, and based on it, a new set of tool-
ing was designed and put in place. The resulting DevOps
processes and CI/CD infrastructure are described in the next
sections.

WORKFLOW

Deciding on a workflow (see Fig. 1) for development with
git, the industry “standard” git flow was adopted, later mor-
phing closer to the GitHub flow [4]. For any given project
the master branch is considered stable, yet not necessarily
production quality. There is no development branch, simply
bug fix and feature branches, all of which tend to be short-
lived. The frequent merges promote targeted and granular
development, reducing the occurrence and probability of
complicated and time-consuming merge conflicts.

To start development for a bug fix or a feature, the devel-
oper manually creates a ticket in the ticketing system. The
name of that ticket is then used as the branch name. On that
branch each commit produces a release that can be passed on
for validation by users. Once a merge request is created, unit
tests are automatically run, and each subsequent push will
trigger a new set of tests to be executed. After a review and
with the tests successful, the branch is merged into master,
resulting in a snapshot build. A tag produces a release that
is automatically deployed into an array of repositories. All
the steps of the process can be performed either from the
command line interface, or from a single browser tab.

For a developer this is a natural workflow, while GitLab [5]
allows for less technically minded people to create releases
as well, after a short training session.

MOPV050
281

©= Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

Development

Stable master Tags
branches . g

Ny ey
‘ }

[FWCORE-|

Feature | > master |
l:'FW-CDRE—':\ - l - \

124

= S f A fwCore-
Bug fix | * master 8.0.1-Beta-

\\\ 01

First beta of
version 8.0.1

=~ fwCore-
NEW
8.0.1-Beta-
development 02
cycle begins ™ New beta with
P / master | bug fix
[FWCORE-) _
l. 123 ,l fwCore-
8.0.1
Feature | Validated

release

Continuous Delivery

Releases

Figure 1: Example of the workflow.

RELEASE GENERATION

RELEASE GENERATION The automation of the pro-
cesses is achieved by use of GitLab Pipelines, executing jobs
on private hosts with Docker [6] executors, which run custom
Linux images loaded with WinCC OA and a set of custom
tooling. For certain quality assurance tasks other images
are used to leverage newer tools. These images themselves
are produced also with GitLab on the very same runners, as
explained below.

CERN WinCC Open Architecture

The CERN WinCC OA Service repackages WinCC OA
for Windows and Linux, in order to add in certain CERN-
wide customizations — including in house license fulfilment

MOPV050
282

©=2d Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-MOPVO50

and Oracle Database integration. This repackaged distribu-
tion is provided to the CERN WinCC OA community. As
a future part of critical infrastructure, each release must be
thoroughly validated to meet the highest QA standards. For
this, the software package is installed on a clean production-
like system, and specific common operations are executed,
including creating applications and running processes. The
validation has been completely automated for Linux with the
use of containers, and as a final product of each automated
release pipeline, a set of development and test container
images are released. These are then used to compile executa-
bles developed at CERN, build components, and test further
integrations.

CERN WinCC OA Framework Components

The compilation and packaging process of WinCC OA
Framework components often requires careful setting up
of environments, making it close to impossible without the
component expert present. This problem was furthermore
difficult to tackle since in the past the binaries were all stored
in the version control system.

As a part of the migration to git and GitLab, all binaries
were stripped from the repositories and their compilation
was shifted to the release pipeline, utilizing the standard
development container image. Any libraries and other build
time dependencies thus must be pulled in automatically dur-
ing the build, removing dependency on a single developer’s
environment, or their knowledge on how to recreate it.

Building the binaries from source just prior to packaging
ensures they match the source code in the repository, and
that no local changes make it to any component or frame-
work release. Each release is tagged with the git revision
hash, and the source code is publicly available.

After compilation, the release pipeline (see Fig. 2) passes
on to the build stage, where the tooling generates documenta-
tion and manuals, updates the component XML specification
used for installing them, and packages it all into a zip file.
Passing into the test stage, several QA jobs are run to find
issues earlier in the development cycle, producing a stable
and well tested set of components for deployment.

Kobe

Kobe is the tool built to automate framework and compo-
nent releases. It was originally envisioned as a leaner version
of ARES, allowing for continuous builds either on GitLab
or locally on the developer’s system. It is built on common,
historically stable and commonly used GNU/Linux tools and
bases its logic on information available in the repository and
in the pipeline. It has since its conception grown to do much
more, including generation of Online Qt documentation inte-
grated into WinCC OA, as well as rich PDF manuals, using
IXTEX templates, and Markdown.

Kobe produces fully framework compatible components
with a guaranteed unique version number for each branch,
tag and revision. Releases follow a specific format with the
component or framework name, the version number and an
optional beta or release candidate suffix. The lack of either

Software Technology Evolution

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

Compliation Analysis
@ COMPILE WIN o @ AST ANALYSIS 5]
@ COMPILE LINUX | £} J L@ SYNTAX CHECK | £
Unit tests Build
@ UNITTESTWIN |43 _
g @ KOBE BUILD o
@ UNIT TEST LINUX | £ J —L
Deployment Release
@ DEPLOYEDMS ({5 |
' @ RELEASE 'y
@ DEPLOY NEXUS | £ J L

Figure 2: Example of a release pipeline.

suffix indicates a final release of that version, leading to
the packages of components from these pipelines getting
labelled accordingly, and to be released in to the appropriate
repositories — after having passed through automated tests.
These unique versions and suffixes allow dependable identi-
fication of deployed versions, thus reducing the ambiguity
what has been deployed.

CERN WinCC OA Frameworks

Frameworks are built in very much the same way, simply
as a collection of components. The collections are specified
with a configuration file and Kobe automatically pulls the the
components from the appropriate repositories. This could be
from a GitLab job, a Nexus [7] repository or from EDMS [8].

During active development, the latest snapshot builds are
included into the framework snapshot distributions, which
are triggered at the end of each component snapshot pipeline.
To ensure the possibility to generate new versions of the full
framework at any time in the future, the versions included
for framework beta and final releases are locked and pulled
from mid- or long-term repositories.

QUALITY ASSURANCE

Quality assurance is an integral part of the CI/CD pipeline,
and includes both static analysis as well as unit tests. For
C++, abstract syntax trees are analysed against thousands
of carefully selected rules from publicly available rule sets,
including MISRA [9], HIC++ [10] and Fuchsia [11], among
others, and a report is produced and made available in a
centralized reporting tool. This allows us to identify hidden
bugs and vulnerabilities, as well as code duplication and
smells, all with historical trends. As abstract syntax trees are

Software Technology Evolution

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-MOPVO50

only possible with compiled languages, a different approach
is taken for CTRL by analysing it with WinCC OA’s own
syntax checker. The results are transformed into standards
compliant reports, visible with details directly in the GitLab
Pipeline UL In the future it is planned to have these also
integrated into centralized reporting tool.

Unit tests implemented according to specifications drawn
up together with the component responsible and users’ feed-
back are included in weekly containerized component tests,
daily full stack integration tests on physical machines as well
as triggered full framework tests of the JCOP framework [12]
and the Unified Industrial Control System and Continuous
Process Control framework (UNICOS-CPC) [13]. A CERN
custom interface to WinCC OA and a framework unit test
component are used to automate the tests. A clean applica-
tion is instantiated in a container, with the set of components
to be tested. The test results generated by the unit test com-
ponent are likewise in standards compliant format and thus
visualized directly on GitLab Pipeline Ul They are also fed
into the centralized reporting tool, improving their visibility.

DEPLOYMENT

Once packaged and tested, components and frameworks
are deployed to repositories. Each repository serves its own
purpose, and depending on the type of release, it is routed
to a different one, completely automatically.

GitLab

For active development, GitLab job artifacts act as the
short-term repository. With GitLab API [14] they can be
pulled programmatically either to a project, or to build a
framework. Based on Amazon S3 [14] compatible object
storage, the releases are quickly available, and are stored
generally for a week. The artefacts of the latest job are stored
indefinitely, as are the artefacts of tags —i.e. betas, release
candidates and final releases.

Nexus

All betas, release candidates and final releases are auto-
matically deployed to Sonatype Nexus repositories. We do
not take advantage of staging repositories, as that purpose
is served by GitLab’s object storage. Nexus repository is a
mid-term repository and is available in parts of the CERN
network, but not outside of it, nor is it available in the exper-
iment networks. Thus, it is mainly used for validation and
pre-production tests.

EDMS

Final releases are deployed to EDMS, our most long term
document repository (more than 30 years). It is also the
most accessible one, available in all CERN networks — exper-
iments included — and outside of CERN. The ARES EDMS
client is used for the deployments to EDMS, as it greatly
simplifies the tasks needed to follow EDMS release work-
flows. Improvements to the tool have been made to allow

MOPV050
283

©

©= Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©=22 Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

better diagnostics of deployments and the document statuses,
increasing its robustness.

NFS

According to previously mentioned requirements we will
now provide details about hardware used and specifications.

INFRASTRUCTURE

GitLab, provided as a service by CERN IT Department,
is used as the backbone of the CI/CD infrastructure as illus-
trated on Fig. 3. The integrated container registry is used to
store container images, and the Ul is used to configure all
of it. CERN GitLab Service also provides public runners,
which are sufficient for most jobs. WinCC OA develop-
ment and testing however have very specific requirements,
necessitating the use of private runners.

Development Verslon control + Continuous Integration Continuous Dellvery

V
I ‘ docker J}& == / —
. — ’__‘_"—-—ﬁ-—_.EEEMS
aa ‘l“ [

\

E NFS
\ O

/-
I_IIEI

. Allure sonarqube

Figure 3: CI/CD infrastructure.

For lightweight jobs, OpenStack [16] Linux and Windows
virtual machines are used. Setting up private runners on
them guarantees availability for our frequent jobs as well
as optimizes the pulling of containers — which are fairly
large when loaded with WinCC OA. This has also allowed
exploratory work towards alternative container based custom
executors which will be necessary for the future operating
systems.

For heavier tasks bare metal servers are necessary. Repack-
aging of WinCC OA distributions for Windows and Linux
are I/0 heavy processes that take over an hour on virtual ma-
chines, yet happen in just minutes on dedicated hosts. Our
full stack integration tests benefits as well from their dedi-
cated bare metal runner, as the tests require a full production-
like system with connected devices, including PLCs, to run
tests on multiple levels, from low-level front-ends to middle-
ware and SCADA integration.

Exposing a bare metal system with a shell runner to a
common GitLab instance is a compromise in security, and
great care is taken to strictly restrict their access.

MOPVOSO
284

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-MOPVO50

CONCLUSION

Approximately twenty-five thousand framework snap-shot
releases, triggered by a matching twenty-five thousand com-
ponent snapshot releases, and hundreds of thousands of more
development releases have been produced since we started
deploying Kobe build infrastructure in the late summer of
2018; not counting hundreds of betas, release candidates
and production releases of component and frameworks. All
of these releases have passed automatic tests in containers
running the latest releases of WinCC OA, which themselves
were generated and tested automatically by our CI/CD tool-
ing.

This is an increase of two orders of magnitude from the
old automatic release service, while reducing the effort for
the developers to close to zero, saving thousands of hours
of work only in releases, not to mention the increase in
quality of the software. What used to be an error prone
and complicated procedure involving multiple different web
applications, now takes all of writing ‘git tag‘ and pushing
the tag to GitLab. For snapshot and development builds,
pushing the sources to GitLab is all there is to it, making it
a natural part of development.

The developers thus benefit from a more natural,
development-oriented workflow, while the users gain more
frequent releases, shorter lead times and simply a better
tested end product, all with publicly available reports and
up to date documentation.

The quality of support has also improved as we can guar-
antee version uniqueness, as well as provide instant test
releases for any bug fixes, to be validated in production-like
environments, while being clearly tagged as development re-
leases. Trusted users can even create merge requests, which
will immediately provide them with a usable release of the
component.

The added control and improved quality assurance of the
strict and replicable release flow also improve the operational
safety and security on the organizational level, while further
security tooling can now be easily integrated.

With conventions and templates, we have arrived at a
highly standardized and unified system. This is not to say
everything is the same, and that there are no exceptions.

Most compilations are configured with gmake, on Win-
dows and Linux, yet some developers have preferred to stay
with pure make or CMake builds. This knowledge of build
system is however abstracted away by scripts and templated
pipelines, and while debugging a failing compilation might
require expert knowledge, most development can be done
by junior developers with limited experience.

Further customizations are also made available through
environment variables, allowing for custom repository struc-
tures and non-standard naming conventions, among other
things. While we approach near complete unification of our
conventions in the group, as the tool is being adopted by
experiments and application groups around CERN, legacy
structures and conventions need to be supported, and as with
any software, further improvements will al-ways be needed.

Software Technology Evolution

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPVO50

The success of the project hinged on the continuous in- [5] GitLab, https://about.gitlab.com/
volvement of the entire team. Their contributions ensured 6]
the fit for our needs, and what was seen was a true integra-
tion of new and existing tooling and processes. The team’s

Docker, https://www.docker.com/
[7] Sonatype Nexus, http://www.sonatype.org/nexus/

involvement also ensured the project’s adoption, and its ever- [8] Engineering & Equipment Data Management Service,
continuing improvement. https://edms.cern.ch/
[9] MISRA,
REFERENCES https://www.misra.org.uk/misra-c-plus-plus/

[1] CERN BE/ICS, https://be-dep-ics.web.cern.ch/ [10] HIC++, https://www.perforce.com/blog/qac/high-
[2] SIMATIC WinCC Open Architecture, integrity-cpp-hicpp

https://winccoa.com/ [11] Fuchsia, https://fuchsia.dev/fuchsia-src/

[3] 1. Prieto Barreiro and F. Varela, “ARES: Automatic Release development/languages/c-cpp/cpp-style

Service”, in Proc. 16th Int. Conf. on Accelerator and Large ~ [12] JCOP Framework, https://jcop.web.cern.ch/
Experimental Physics Control Systems (ICALEPCS’17), [13] UNICOS Framework https://unicos.web.cern.ch/

Barcelona, Spain, Oct. 2017, pp. 503-507. doi:10.18429/ . i .
JACOl- ICALEPCS2017 - TUPHAG49 [14] GitLab API, https://docs.gitlab.com/ee/api/

[4] GitHub Flow, [15] Amazon S3, https://docs.aws.amazon.com/s3/
https://guides.github.com/introduction/flow/ [16] OpenStack, https://www.openstack.org/

MOPV050

Software Technology Evolution 285 @

©= Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

