
STANDARDIZING A PYTHON DEVELOPMENT ENVIRONMENT FOR
LARGE CONTROLS SYSTEMS ∗

S. Clark, P. Dyer, S. Nemesure, BNL, Upton, NY 11973, U.S.A.

Abstract
Python provides broad design freedom to programmers

and a low barrier of entry for new software developers. These
aspects have proven that unless standardized, a Python code-
base will tend to diverge from a common style and architec-
ture, becoming unmaintainable across the scope of a large
controls system. Mitigating these effects requires a set of
tools, standards, and procedures developed to assert bound-
aries on certain aspects of Python development — namely
project organization, version management, and deployment
procedures. Common tools like Git, GitLab, and virtual en-
vironments form a basis for development, with in-house utili-
ties presenting their capabilities in a clear, developer-focused
way. This paper describes the necessary constraints needed
for development and deployment of large-scale Python appli-
cations, the function of the tools which comprise the devel-
opment environment, and how these tools are leveraged to
create simple and effective procedures to guide development.

GOALS
Python has grown in popularity since its 1991 incep-

tion, with wide use in scientific and analytic applications.
The myriad libraries released to simplify complex tasks —
such as Numpy and SciPy for scientific calculations, and
the PyQt5 user interface toolkit for application develop-
ment — have driven increased adoption within the Collider-
Accelerator Department (C-AD) Controls Group at BNL. As
this adoption began, many developers created simple scripts
scattered across the filesystem, which grew into operation-
critical applications over many years. Long-term mainte-
nance of these scripts is difficult for future developers who
must now not only learn the codebase, but also the unique
project structure and procedures of dozens of disparate pro-
grams. The primary goal of the Python development envi-
ronment is to alleviate the manageability issues described
above.

PYTHON DISTRIBUTION
An essential requirement for Python usage in a large com-

plex must be to establish a common base across all work-
stations. The Anaconda Python distribution provides ex-
actly this, with each version containing a specific set of
Python binaries and packages. Additionally, Anaconda is
well-supported with first- and third-party tools to ease main-
tenance and deployment of distribution upgrades.

Initially, the Anaconda distribution was installed to a net-
work mount which was globally available to all hosts, and
any necessary packages (in addition to the standard set) were
∗ Work supported by Brookhaven Science Associates, LLC under Contract

No. DE-SC0012704 with the U.S. Department of Energy

installed directly upon request. However, two primary is-
sues were encountered with this method: performance and
maintainability. Performance issues appeared shortly after
the adoption, which manifested in slow application launch
times. Latency and bandwidth limitations over the network
were discovered as the probable cause. Maintainability was
further impacted by cascades of package upgrades triggered
by new package installations, leading to previously-working
scripts and programs breaking due to backwards incompat-
ibilities unless careful intervention was taken during the
process.

The deployment philosophy for the Anaconda distribu-
tion was changed to account for both issues. As mentioned
above, inhibited performance was found to stem from net-
work latency. During investigation, locally-installed copies
of the Anaconda distribution showed a marked decrease in
application launch time. Resulting from the discovery, the
Anaconda distribution was moved from the network share to
local disk on each host requiring Python. The tool conda-
pack [1] facilitates this by allowing system administrators to
create a portable clone of the Anaconda distribution which
then can be extracted and installed locally on machines for
use.

On a yearly schedule, the Anaconda distribution is rebuilt
and redistributed. This provides an opportunity for Python
and package upgrades, base package additions, as well as
other general maintenance of the distribution. The newest
distribution is constructed on a machine, tested for general
compatibility, and finally deployed to all machines using the
conda-pack tool as described above. Two local copies of
Anaconda are maintained upon release of a new distribu-
tion — the new version and the prior version – guaranteeing
Applications two years of first-class support, allowing devel-
opers to migrate to newer Anaconda releases at their own
pace. Distributions prior to the two locally-kept copies are
available on the network share. This limits the local disk
usage by Anaconda versions, but reintroduced issues with
network latency. This, however, should be mitigated if ap-
plications are regularly maintained and released using the
latest available distribution.

PROJECT CREATION & ORGANIZATION

A unified project architecture is key for ongoing main-
tainability and standardization of development procedures.
The details of how projects are structured at the file level are
equally important as aspects of development such as a stan-
dard package base, ensuring that developed procedures work
equally across any project created within the development
environment.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV049

Software Technology Evolution

MOPV049

277

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



A custom utility, caddy, was created to ensure all projects
follow a unified layout. Caddy is based on the open source
Python package CookieCutter, which allows for the devel-
opment of project templates consisting of boilerplate files
and code for a project. The templates utilize a syntax which
allows developers to insert values into the boilerplate based
on input received when creating the initial project; these
values, which may include the project name, author, and
options to Git-version the project, modify both file names
and contents to suit the new project. In addition to the ba-
sic project structure and contents, the templates may also
optionally include a script to be run when a project is ini-
tially created. The development at C-AD heavily relies on
Python virtual environments, so this post-creation script au-
tomatically spins up a virtual environment and installs base
requirements upon project creation, as well as sets up a Git
repository for the new project. Templates have been defined
for several types of project bases — such as graphical user
interfaces, command line applications, web applications —
and placed into Git repositories for later reuse.

The templates used by Caddy were designed to conform to
the Python Packaging User Guide (PyPUG). Following Py-
PUG allows all applications and packages to be installed into
virtual environments; this simplifies development and de-
ployment as is discussed later, and prevents potential lock-in
that a nonstandard packaging system would introduce. Ad-
ditionally, in-house packages which may benefit the broader
community can easily be shared on package hosts like the
Python Package Index.

The process of creating a project from a template has been
automated by the Caddy script to ease barriers to entry and
to minimize user error. The creation process consists of
two parts: selecting a template, and defining values. The
user is given a list of available templates obtained from Git-
Lab, and makes a numerical selection for the desired project
type. Then Caddy prompts the user for each variable used
within the template and ensures valid values are given for
each. Once complete, Caddy clones the template into a new
directory specified at the prior prompt, performs template
variable substitution, and runs the post-generation script as-
sociated with the template. At this point, the user is informed
of the new project location and may begin development. The
automation afforded by setting up projects through Caddy
allows developers to focus less on project setup and boil-
erplate, and more on the business logic of the application.
Refer to Fig. 1 for a demonstration of this process.

VERSION MANAGEMENT
Version management is another critical piece of Python de-

velopment given the speed at which programs evolve. When
compared to other version control systems (VCS) such as
ClearCase, Git provides three main benefits: free software,
mature and complete implementations, and broad commu-
nity support. These aspects make Git a modern, well-known,
and cost-effective choice for development. Git offers a rel-
atively simple set of core features which can be expanded

Figure 1: Use of caddy to create project, include template
selection & variable definition.

upon over time, easing the learning curve for those new to
Git.

A platform to host source code and version information is
also required. Many solutions exist for Git-based reposito-
ries, and GitLab was chosen out of the offerings due to the
availability of a free, self-hosted version of the platform, as
well as additional project management features included in
the platform. The self-hosted option offers greater control
of the installation and data storage, while still allowing flexi-
bility to migrate to an enterprise tier with additional features
and commercial support. GitLab’s primary feature, aside
from version control, is a robust continuous integration and
deployment (CI/CD) system. At C-AD, this has been lever-
aged to automate the building and deployment of Python
packages and applications; this is further discussed below.

From a conceptual standpoint, a coherent version num-
bering system is necessary to facilitate tracking and upgrad-
ing various packages and applications within the develop-
ment environment. The Semantic Versioning Specification
(SemVer) was used, which operates under the principle that
version numbers contain intrinsic meaning by defining ma-
jor, minor, and patch revisions. For example, a package
version v3.21.5 is known to be the 3rd major revision, 21st

minor revision, and 5th patch revision. When used as de-
fined in the specification, a change in the major revision
indicates that the new release breaks backwards compati-
bility. Changes in minor or patch revisions must maintain
backwards compatibility however, and either add new fea-
tures or fix existing bugs, respectively. This standard allows
developers to be aware of changes they may encounter when
upgrading dependencies for a project, and also ensures the
smooth installation of packages into virtual environments as
is defined by the PEP440 specification used by Python. [2]

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV049

MOPV049C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

278 Software Technology Evolution



DEVELOPMENT & DISTRIBUTION
Applications

Applications created in the development environment
must explicitly disallow untracked modification of released
executables. Releasing Python source files directly to a write-
able directory was initially viable; however, as programs
increased in complexity, multi-file applications became un-
manageable and prone to untracked changes. The following
requirements for a Python application build system were
identified: performance must be responsive for user-facing
applications; all necessary files and any package dependen-
cies must be bundled with the application; and changes to
released applications must be made through version control
to ensure all version history is tracked.

Various solutions were considered to bundle applications,
including Python’s native ZipApp module, Facebook’s XAR
technology, Pants build system’s PEX, and LinkedIn’s Shiv
tool. ZipApp was ruled out as its limitations on inclusion of
C-extension module created a cumbersome caveat for devel-
opers. [3] XAR showed initial promise in its ability to bundle
all source files and dependencies, but was found inadequate
due to the overhead of cutting-edge, OS-level dependencies
which are unsupported by less recent Linux distributions. A
significant trial was performed with PEX, but despite having
all features necessary, launching of bundled executables was
not performant enough for user-facing tasks due to reliance
on the pkg_resources library. [4] Finally, Shiv was found
marketed as a performance-optimized tool with all features
offered by Pex. After many weeks of testing, Shiv was found
to satisfy all feature and performance criteria.

Shiv allows applications to be released as pseudo-binary
files, whereby all source code and dependencies are bundled
into a ZIP file containing a specific syntax to allow execution
by the Python interpreter. Since all contents are contained
within a single archive, modification of released applications
is more difficult than helpful; one would need to extract the
archive, make changes, re-archive with the correct Python-
specific syntax, and copy over the existing binary. This
obfuscation enforces developers’ use of version control for
projects.

Further, since all applications bundle dependencies within
the binary, different applications may rely on differing pack-
age versions. This gives developers additional flexibility to
upgrade dependencies (or not), irrespective to the underly-
ing Python distribution. Some larger dependencies, such as
PyQt5, would greatly increase disk usage by executables if
they were to be included in each archive, so often-used pack-
ages are included as a part of the Anaconda distribution so
any application can access those packages without bundling
them in the archive.

Packages
Initial Python modules developed were released directly as

source into a common directory on the PYTHONPATH, making
the modules accessible to Python scripts system wide. This
mode of development was easy, as no special setup was

needed to use them. But, as some breaking changes were
introduced to these common modules, any dependent script
or application broke immediately with no procedure to revert
to a prior version. So a method to version custom packages
— just as is done through the Python Package Index (PyPI)
— was necessary.

The development environment, as mentioned previously,
specifies that packages must be structured to conform to the
Python Packaging User Guide. An effect of this is that pack-
ages are able to be built by the setuptools module into
tar.gz archives for later installation. Using this capability,
in-house packages are bundled into versioned archives when
released; these act as snapshots of the package at release
time. These bundles are then placed into a common directory
and can be installed into other projects indefinitely, regard-
less of any future development or releases of the package.
Pip, the Python package manager, was configured globally
to search this common directory for packages when a user
makes an installation request. Developers wishing to use
first-party packages can install them into a project’s virtual
environment just as they would with any third-party package
available through PyPI in order to enforce strict version-
ing, as opposed to making them available as a part of the
Anaconda distribution.

Figure 2: Various cadpip options for managing project
packages.

Python’s default Pip provides a very simple package
management interface, but lacks any higher-level functions
such as version conflict resolution or the notion of mul-
tiple package sets, such as for development and release.
Various tools were considered for this task, such as Po-
etry and Pipenv, but were either immature or lacking in
recent development at the time of investigation. So, a cus-
tom script cadpip was created to handle version resolution
and package set management. Package requirements are
defined in two files: requirements/production.in and
requirements/development.in. Packages listed here
can either be loose or pinned, meaning any version may be
used or a specific version is required, respectively. Run-
ning the cadpip switch {p,d} command updates pack-

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV049

Software Technology Evolution

MOPV049

279

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



ages to the latest available versions which satisfy the con-
straints in the production.in and development.in files,
respectively. It then uses piptools to bring the current
virtual environment into sync with the selected package by
adding, updating, and removing packages as necessary. The
final set of package versions which were installed are then
written to the files requirements/production.txt and
requirements/development.txt depending on which
package set a user chose; these files always contained pinned
packages, and are used to exactly recreate the virtual envi-
ronment when a project is either cloned or built. Refer to
Fig. 2 for a sample of the tool’s capabilities.

RELEASING PROJECTS
GitLab’s CI/CD feature is leveraged during the release

process, as mentioned in the Version Control section, which
hooks into Git procedures to trigger predefined actions on
a remote server. The actions performed when a project is
released include: optional unit testing with PyTest, building
projects using either Shiv or setuptools (described above),
and releasing the build artifacts to appropriate locations for
use.

The benefits of using CI/CD as opposed to building and
releasing locally are two-fold. First, projects being built
are guaranteed to be in an unmodified environment. If a
user were to build a project locally, modifications to the
Python environment may impact the end product, such as
packages installed in the home directory or changes to the
PYTHONPATH environment variable. CI/CD ensures that the
build environment is unchanged by running builds in a sand-
boxed virtual environment under a dedicated account which
maintains the default settings. So, if tests pass and a package
builds, it can reasonably be expected that the application or
package will work on any machine setup with the Anaconda
distribution used for the build. Additionally, by executing all
build and release procedures from a dedicated account, the
paths applications and packages are released to may remain
read-only to other users to prevent any modifications.

Bringing together semantic versioning with the CI/CD pro-
cess is a lightweight shell script, git release (as shown

Figure 3: git release prompting for version selection
prior to releasing software.

in Fig. 3). git release makes the release process as sim-
ple as a prompt for users. It parses the Git history to find
the most recent release number, and calculates new version
numbers for major, minor, and patch releases. The user
may select one of the three, which git release then tags
the most recent commit with and pushes to GitLab. This
formally kicks off the release process, at which point git
release displays a progress bar tracking the build process
from GitLab. If any errors occur, they are also printed to the
console for inspection.

REFERENCES
[1] J. Crist. “Conda-pack.” (2017), https://conda.github.
io/conda-pack/

[2] N. Coghlan and D. Stufft, Pep 440 – version identification and
dependency specification, 2013.

[3] P. S. Foundation. “Zipapp — manage executable python zip
archives.” (2021), https : / / docs . python . org / 3 /
library/zipapp.html#caveats

[4] LinkedIn. “Shiv: Motivations & comparisons.” (2021), https:
//shiv.readthedocs.io/en/latest/history.html

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV049

MOPV049C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

280 Software Technology Evolution


