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Abstract

As part of the MACH-B (Multipole Accelerator Codes
for Hadron Beams) project, Reservoir Labs has developed a
Fast Multipole Method (FMM [1-7])-based tool for higher
fidelity modeling of particle accelerators for high-energy
physics within Fermilab’s Synergia [8, 9] simulation pack-
age. We present results from our implementations with a
focus on studying the difference between tune depression
estimates obtained using PIC codes for computing the par-
ticle interactions versus those obtained using FMM-based
algorithms integrated within Synergia. In simulating the self-
interactions and macroparticle actions necessary for accurate
simulations, we present a newly-developed kernel inside of
a kernel-independent FMM, where near-field kernels are
modified to incorporate smoothing while still maintaining
consistency at the boundary of the far-field regime. Each sim-
ulation relies on Synergia with one major difference: the way
in which particles interactions are computed. Specifically,
following our integration of the FMM into Synergia, changes
between PIC-based computations and FMM-based compu-
tations are made by simply selecting the desired method for
near-field (and self) particle interactions.

INTRODUCTION

The majority of numerical approaches for accelerator
multiparticle-tracking solve the macroscale problem by em-
ploying Particle-In-Cell (PIC) methods [8—14]. These meth-
ods incorporate an Eulerian method for solving the neces-
sary equations and Lagrangian techniques to advect particles
through the domain (e.g., see Fig. 1).
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Figure 1: PIC-based Hockney solver. Given a cloud of
charged particles, iterate (1) Grid charge deposition; (2)
Compute potential; (3) Compute forces at grid points; (4)
Compute forces at particle locations.

Since space-charge modeling in high-intensity hadron
beams for the accelerator physics community requires scal-
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able and high-fidelity algorithmic approaches, all new com-
putational approaches must (1) be inherently multiscale, (2)
exploit locality, (3) reduce expense of non-locality while han-
dling accuracy, (4) guarantee high accuracy when needed,
and (5) handle a variety of complex geometries.

Reservoir Labs’ MACH-B (Multipole Accelerator Codes
for Hadron Beams) project addresses the above five key
elements, maintaining the strengths of PIC codes and ap-
proaches while further improving upon some of their weak-
nesses, allowing domain experts to evaluate and optimize
various scenarios for complex high-energy physics experi-
ments. The MACH-B technology is based on both existing
and novel mathematical frameworks, providing scalable,
high-performance algorithms that will assist in accurately
and rapidly computing a variety of complex particle acceler-
ator simulations; specifically, (1) Fast Multipole Methods
(FMM) and (2) Boundary Integral Solvers (BIS).

Introduction to Fast Multipole Methods

FMM approaches achieve linear scaling by separating
near- and far-field interactions (e.g., see Fig. 2) on a spa-
tial hierarchy using tree data structures. As they achieve
arbitrary precision at modest cost with straightforward error
estimates [1,2,4-6,15-20], FMM techniques are well-suited
for problems requiring high accuracy at large scales, such
as in particle accelerator simulations.
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Figure 2: (Left): A naive O(N?) approach for computing
the interactions between well-separated sources and targets.
(Right): Using multipole and local expansions to reduce
far-field costs, based on refinement.

FMMs are inherently multiscale, separating a regular
domain into disjoint sets, using a tree structure to exploit lo-
cality as well as reduce the expense of non-locality through
low-rank approximation multipole expansions [1,4]. FMMs
compute the total field at a domain B as the sum of (a) the
field due to the sources contained in its near field /" and (b)
its far field # 8. Contributions from .42 are computed using
direct, dense summations, while contributions from %2 are
obtained by evaluating approximating expansion coefficients,
constructed to achieve far-field low-rank approximations at
computationally-efficient and provably-accurate levels of ac-
curacy. Through two parameters ((1) for points per smallest
grid in the hierarchy and (2) for number of coefficients in
the expansions), high accuracy is guaranteed [2,3,21].
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The FMM uses upward and downward passes on a hi-

erarchical tree structure, employing multiple operators for
converting expansion (multipole and local) coefficients to
achieve optimal O(n) complexity (See Fig. 3 from [4]).

Figure 3: Local to Local (L2L), Multipole to Multipole
(M2M) and Multipole to Local (M2L) operators translate
coeflicients efficiently throughout the FMM algorithm.

INTEGRATING FMM INTO SYNERGIA

In this work, we focus on MACH-B’s effort in integrating
the FMM algorithm [1,20] into Synergia [8, 9] for comput-
ing particle interactions as compared to existing PIC-based
methods. We rely on the STKFMM from [15], itself a gener-
alization of the highly-efficient PVFMM [6] implementation
of the kernel-independent FMM [3-5, 19]. We chose this
particular implementation of the FMM for two main reasons:

1. Kernel-Independence: rather than applying only to the
Laplace kernel (1/r), this version is kernel independent
(in particular, it can handle any elliptic kernel).

2. Computational Performance: both the theory and im-
plementation of this version are among the most per-
formant currently existing.

Prior to the introduction of the FMM, Syner-
gia offered two ways of computing interactions,
both based on the Particle-In-Cell (PIC) method:
space_charge_2d_open_hockney() and
space_charge_3d_open_hockney(). All rely on Hock-
ney’s method (as seen in Fig. 1) and can be summarized as
follows: given a cloud of charged particles,

1. Grid Charge Deposition: for each cloud particle, “de-
posit”/interpolate its charge on a regular uniform grid.

2. Compute Potential: compute the potential generated by
charges from a grid point at all other grid points using
the FFT (convolution with electrostatic kernel 1/r).

3. Compute Forces at Grid Points: compute 3D forces at
each grid point using finite differences.

4. Compute Forces at Particles: interpolate force values
from the uniform grid to the particle locations.

The FMM was integrated into Synergia such that
changes from native PIC-based routines to FMM-
routines are performed with minimal effort; currently,
switching between methods requires merely chang-
ing one word in the name of the aforementioned
functions to: space_charge 2d_open_fmm() and
space_charge_3d_open_fmm(), respectively.
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Verifying Correctness of FMM in Synergia

To verify correctness and performance of each implemen-
tation, we perform to three different sets of experiments:

e Test I: Compare Synergia’s 3D Hockney uniform grid
routine potential computations with a naive approach.

e Test 2: Compare 3D FMM routine potential computa-
tions with a naive approach (same grid as Test 1).

e Test 3: Compare 3D FMM, 3D Hockney (Synergia)
and naive force computations on arbitrary point clouds.

The first two tests verify the correctness of each implemen-
tation, positioning random charges at uniform grid points.
The potential at each grid point is computed using a naive
(O(N?)) method and constitutes the ground truth against
which we compare solutions. We limit ourselves to 32 points
per dimension since computations through the naive method
become to onerous beyond this point. Because particles are
located at grid points, no interpolation is necessary for the
PIC codes; hence, expected numerical accuracy for PIC-
based methods matches that of the FFT itself(i.e., ¢ ~ 10715
in double precision) as seen in Table 1.

Table 1: Test 1: Compare Synergia’s 3D Hockney routine
potential computations with naive approach on uniform grid.
The PIC-based routine behaves as expected.

G per | Total Rel.
dim Gprs Err.
8 512 | 456-1071°
16 4096 | 1.36-10713
32 32768 | 3.78 - 10713

Test 2 is analogous to Test 1, except we employ the FMM
for computing particle interactions rather than Synergia’s
PIC-based methods. The FMM is oblivious to charges
abeing located at gridpoints. The FMM parameter, p, dic-
tates its accuracy and computational costs; single precision
can be expected with p = 8 and double precision withp = 12
while the latter takes about twice as long as the former. Ta-
ble 2, shows results for different values of p, where it is
observed that the FMM behaves as expected.

Table 2: Test 2: Compare 3D STKFMM routine potential
computations with naive approach on uniform grid (same
grid as Test 1). The FMM-based routine behaves as expected
with higher accuracy as p is increased.

G per | Total Rel. Rel.
dim Gpis Err. (p=8) | Err. (p=12)
8 512 [ 495-107° [ 1.91-107 11
16 4096 | 2.95-107° | 9.72-107!2
32 32768 | 2.97-107° | 5.16- 10712

Test 3 compares the accuracy of Synergia’s PIC-based
methods and the FMM in a general case: a cloud of charged
particles. For this purpose, we generate a 3D ensemble of

Software Technology Evolution




18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

charges (positive/protons) containing up to 32768 particles
and then compare to the naive solutions in Table 3. The
FMM (p = 8) achieves full (single) precision while the PIC-
based method suffers from significantly lower accuracy due
to interpolations and finite difference steps (Step 1, Step 3
and Step 4 from Fig. 1) associated with PIC codes. When
particles, are not at grid points (as in Test 1) and forces must
be computed, the error resulting from these steps becomes
dominant.

Table 3: Test 3: Compare 3D STKFMM, 3D Hockney
(Synergia) and Naive force computations on arbitrary point
clouds. The FMM preserves its accuracy regardless of the
particle distribution, whereas the PIC-based methods suffers
from significant numerical errors associated with interpola-
tion and finite differences.

Nyartictes | Param. (M/p) | Rel. Err. (PIC/EMM)
4096 32/8 0.228 /128 - 1077
16384 32/8 0.166/2.07 - 107
32768 32/8 0.141/2.66 - 107
4096 64/8 0.180/1.28 - 10”7
16384 64/8 0.141/2.07 - 107
32768 64/8 0.123/2.66 - 107
4096 128/8 0.116/1.28 - 107
16384 128/8 0.106 /2.07 - 107
32768 128/8 0.0992 /2.66 - 107
4096 256/8 0.0587/1.28 - 10~/
16384 256/8 0.0640 / 2.07 - 107
32768 256/8 0.0656 /2.66 - 107

To these results, we note the following observations:

1. Inthe most general case (e.g., arbitrary particle clouds),
the FMM offers greater accuracy and speed compared
with PIC-based methods.

2. In special cases, including the case where the underly-
ing solution is smooth (e.g., as the number of particles
goes to infinity., i.e., Vlasov), PIC methods may ex-
hibit higher accuracy (see tune depression case below),
although such conditions may be difficult to verify.

TUNE DEPRESSION SIMULATIONS

The (x/y) tune of a particle is defined as the number of
(x/y) transverse oscillations a particle experiences per rev-
olution around a closed-loop accelerator. Tune is heavily-
dependent upon the nature of the accelerator lattice, but also
depends strongly on the interactions between the particles
(self-energy). For instance, researchers at Fermi Lab have
shown an interesting relationship between the transverse
(x/y) offset of a particle’s original position within a Gaus-
sian bunch and its tune. Figure 4 shows the computation
of the tune for particles with initial offset between 0 ¢ and
5 o (measured in number of bunch transverse standard devi-
ations: ¢) In particular, this figure shows the importance of
self-interactions. Indeed, no changes in the tune are observed
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SIS18 test lattice x tune vs. x offset
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Figure 4: Tune depression (Hz; x-transverse oscillations per
turn) vs initial x offset. Results obtained using Synergia PIC
routine for computing particle interactions.

when the interactions are neglected, while an interesting re-
lationship is present when they are. This demonstrates the
importance of particle-particle interactions in this context
and, more generally, for accelerator simulations.

In the context of MACH-B, we study the difference
between tune depression estimates obtained in Synergia
from PIC versus FMM, adopting the following methodol-
ogy: first, create a Gaussian bunch of size approximately
107 x 1075 x 10* mm centered at the origin and containing
approximately 10'° physical particles (protons) and between
10* and 107 macroparticles depending on the situation (see
below for more information about macroparticles). Each
macroparticle is randomly assigned a position and momen-
tum following a Gaussian distribution with mean 0 and co-
variance matrix specific to the lattice, chosen so that the
overall shape of the bunch remains constant at each itera-
tion. We introduce “spectator particles” with specific initial
offsets to monitor the tune as a function of offset.

After initializing the particle bunch, we set the particles in
motion and record the transverse position of each spectator
particles after each turn (50 to 500 with 10" to 102 time steps
per simulation). We extract the tune as a function of offset by
taking the Fourier transform of the x/y transverse position as
function of turn. The estimate for the tune is taken to be the
dominant frequency identified using the resulting spectrum.
Finally, we plot the relationship between the estimated tune
and the original offset.

We reproduce the results obtained using PIC codes by us-
ing an FMM in its stead. Important differences are observed,
however, and this leads to multiple key observations:

1. FMMs can reproduce observed results from PIC codes
in the context of tune depression computations.

(a) FMMs faithfully capture the physical interactions
between particles up to numerical accuracy, while
PIC methods introduce a large degree of regular-
ization(often desirable).
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SIS18 test lattice x tune vs. x offset
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Figure 5: Tune depression (Hz; x-transverse oscillations per
turn) vs initial x offset. Results obtained using FMM inte-
grated within Synergia for computing particle interactions.
PIC routines introduce more regularization than the FMM
resulting in smoother (less noisy) estimates.

2. It is computationally necessary to use macroparticles
to represent a particle bunch as the number of particles
needed to capture the full dynamics (> 1012).

(a) The use of macroparticles requires the user to
use a modified Laplace kernel for representing
interactions with the FMM.

(b) The number of macroparticles and type of modi-
fied kernel affects results; i.e., regularization of
the singularity at the origin has the largest effects.

These observations are important for understanding the
advantages and disadvantages of using FMMs for particle
accelerator simulations as detailed below.

FMM vs. Tune Depression Simulations

As previously mentioned and shown in Fig. 5, we success-
fully reproduced the relationship between tune depression
and initial particle offset within a Gaussian bunch using
Synergia with an FMMs replacing PIC. However, results
obtained using the FMM tend to be more noisy than those
obtained using Synergia’s native PIC methods.

This phenomenon is mostly due to the inherent regulariza-
tion associated with PIC methods; the key for computational
efficiency here is the use of the FFT, which leads to an
O(Nlog(N)) scaling (N being the number of grid points)
rather than a prohibitive O(N?) scaling in the case of a naive
computation. The use of the FFT, although efficient, comes
at a cost: the use of a uniform (DFT) grid. The need to
go between charges in an arbitrary configuration to (proxy)
charges on a regular grid entails the use of interpolation
(deposition) further introducing artificial regularization. In-
deed, after deposition, two particles that were originally
close to each other, and that would thus have exerted large
forces upon each other, now find themselves much farther
apart and thus exerting much weaker forces.
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By contrast, the FMM can compute all interactions be-
tween particles with high numerical accuracy without the
need for deposition, interpolation, or a regular grid or finite
differences, thus avoiding regularization. In addition to pre-
serving high accuracy, FMM costs remains low (i.e., O(M)
for M particles). It turns out, however, that this absence of
regularization may not always be beneficial.

Indeed, in this specific case (Gaussian bunch), regular-
ization proved beneficial as seen from the qualitative dif-
ferences between the smoother curve in Fig. 5 and noisier
one in Fig. 5. The main reason behind this is that the un-
derlying true (asymptotic as the number of particles goes to
infinity) solution for this particular problem is itself smooth.
In this context, regularization can capture the underlying
physics (one does not lose information by smoothing/regu-
larizing since the solution is already smooth). By contrast,
the FMM suffers from strong fluctuations due to small local
charge density inhomogeneities that are negligibly small in
the asymptotic solution (e.g., Debye screening).

While PIC-based regularization may be advantageous
in certain contexts, it is, however, not always appropriate
since its success ultimately relies on strong un-verifiable
hypotheses regarding the underlying physic. Instead, the
FMM offers a fast alternate approach to computing particle
interactions without the need for such strong assumptions.
While a potential introduction of noise in the estimated so-
lution is possible, this noise can be controlled through the
use of macroparticles and modified interaction kernels.

When the charge density is not homogeneous, or when
the interactions between multiple bunches are considered,
PIC methods are further disadvantageous: the rectangular
domain covered by the regular grid needed must contain
all particles present in a PIC simulation. However, for an
inhomogeneous density, this results in potentially more grid
points than particles (many having zero charge), and there-
fore an FFT cost (proportional to number of gridpoints)
much higher than that of the FMM (proportional to the num-
ber of particles).

Macroparticles and Incorporation into FMMs

Despite significant advantages of FMMs over PIC meth-
ods, it necessary to use macroparticles for large simulations
purposes. Macroparticle is an all-encompassing term for a
family of heuristics, by which the number of particles in a
simulation is significantly reduced compared with the num-
ber of physical particles.! In Synergia, macroparticles are
created through a smaller number of particles with larger
charges. For instance, to perform a PIC-based simulations in
Synergia using 102 physical particles of charge e, but only
107 macroparticles, one would simply create a simulation

with 107 particles having charge 110—()'72 e=10e.
Although often appropriate, such simple macroparticles
may not always capture physical phenomena appropriately.

In this sense, a more suitable way of creating macroparticles

! Given their fewer numbers, the interactions between marcoparticles must
be modified if the solution is to represent a larger number of particles.
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Figure 6: Tune depression (x) vs original x offset for modified
interaction kernel (1/(r+ &)) using simulations with 6.4- 100
physical particles and 6.4 - 10* macroparticles. In Fig. 5,
S = 1072 was set while here, we set § = 107>, Note how
less regularization leads to a much noisier outcome.

is through the use of a modified interaction kernel. Modi-
fying the interaction kernel (electrostatic potential 1/r) by
reducing the strength of the singularity at the origin, can
be used to introduce regularization as well as to emulate
the behavior of the particles in the asymptotic limit (e.g.,
local averaging, Debye screening, etc.). In MACH-B, we
modify this kernel by adding a small positive quantity to
the radius, so that the interaction kernel now takes the form:
1/(r+8), for some & > 0, mollifying the strong forces at the
origin (responsible for noise) while behaving like a regular
electrostatic potential far from the origin.

The parameter § can have a significant impact on the
qualitative behavior of the solution for computing the tune
depression in the previous section as shown in Fig. 6 as
compared to Fig. 5. These figures show computations of the
tune depression using the same bunch but with two different
interaction kernel § values. Figure 6 effectively approaches
the unregularized case, whereas Fig. 5 represents macropar-
ticles that interact like point particles when far away, but
produce much smaller forces when close by. In particular,
note the how much smoother the results are when using even
a minimal (§ = 10~2) amount of regularization.

Macroparticles are not merely for computational conve-
nience; their appropriate modeling is necessary for capturing
the physics. For instance, for the tune depression simulations
described in the previous section, one could simply try to
reduce the number of physical particles rather introducing
macroparticles. This, however, fails to generate the desired
outcome as shown in Fig. 7 because a bunch with signifi-
cantly fewer particles will behave significantly differently
than a dense bunch. A dense bunch, however, cannot be
simulated directly because too many physical particles are
required.
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Figure 7: Tune depression (x) vs original x offset for a
varying number of physical and macroparticles. In Fig. 6,

Nppysicat = 64 - 10%, Nyyyero = 6.4 - 106, whereas here
Nppysical = Niacro = 6.4 - 10%. Note how using too few

physical particles (or inappropriate macroparticles) fails to
capture the appropriate behavior.

CONCLUSIONS AND FUTURE WORK

In MACH-B, we have sucesfully integrated FMMs into
the Synergia particle accelerator simulation software suite
and have shown the correctness of our implementation and
have provided information favoring the use of FMM in many
cases, especially when higher accuracy is needed or when
the underlying solution may exhibit strong variations.

In our tune depression studies, the advantages of the FMM
in this case are salient. Indeed, our FMM algorithm is con-
structed in such a way that it can handle a much larger family
of macro-particle interaction kernels than can PIC codes,
allowing the user to introduce various kinds of regulariza-
tion when appropriate, or to simply do away with any sort of
regularization without loss of accuracy. By constrast, PIC
codes always introduce a significant amount of regulariza-
tion which nature is quite rigid and difficult to modify. The
FMM also offers better scalings than PIC codes in many
cases (e.g., multiple bunches).

As we continue to modify our kernels and incorporate
them into additional PIC-related codes, we anticipate the
FMM libraries will become powerful tools for domain scien-
tists and researchers for study and cross-verification, largely
due to their ease of use and modification.
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