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Abstract 
 
The Controls Configuration Service (CCS) is a core 

component of the data-driven Control System at 
CERN.  Built around a central database, the CCS provides 
a range of client APIs and graphical user interfaces (GUI) 
to enable efficient and user-friendly configuration of 
Controls. As the entry point for all the modifications to 
Controls system configurations, the CCS provides the 
means to ensure global data coherency and propagation of 
changes across the distributed Controls sub-systems and 
services. With the aim of achieving global data coherency 
in the most efficient manner, the need for an advanced data 
integrator emerged. 

The “Controls Configuration Data Lifecycle manager” 
(CCDL) is the core integration bridge between the 
distributed Controls sub-systems. It aims to ensure 
consistent, reliable, and efficient exchange of information 
and triggering of workflow actions based on events 
representing Controls configuration changes. The CCDL 
implements and incorporates cutting-edge technologies 
used successfully in the IT industry. This paper describes 
the CCDL architecture, design and technology choices 
made, as well as the tangible benefits that have been 
realised since its introduction. 

INTRODUCTION 
 

The Controls Configuration Service (CCS) is a core 
component of CERN’s Control system,  serving as a 
central point for the configuration of all Controls sub-
domains. CCS ensures that the data provided to other 
services is done in a coherent and consistent way. CCS is 
used by a diversified group of users, including installation 
teams (configuring Controls hardware), equipment experts 
(configuring processes and applications), and Accelerator 
operators. All CCS users interact with the service at 
various points in time, to verify or define appropriate 
configurations. 

The service is built around a centralised Oracle database 
server. To minimise downtime of the system and risks of 
negative impact to the users, the server is deployed in a 
cluster as 2 redundant nodes, providing 99.9% availability. 
The data stored in the CCS database (CCDB) may be 
accessed via a dedicated high level web-based editor - 
Controls Configuration Data Editor (CCDE) [1]. At the 
same time the service also provides advanced Java and 
Python REST APIs which allow users to efficiently 
configure, modify and maintain configuration data in a 
programmatic way. 

The CCS service has been an integral part of the Controls 
system for many years. The first version was created in the 
late 80s, during operations of the Large Hadron Collider’s 
predecessor - The Large Electron-Positron Collider (LEP). 
Since that time the service has evolved and been 
consolidated multiple times. The last renovation started 4 
years ago [2] to match the CCS technology stack with 
technologies widely used in the software industry. All CCS 
components are based on Java (currently version 11) and 
the Spring framework. From the Spring framework, Spring 
Boot has been selected as a solution to establish a common 
architecture among all the applications in a simplified and 
unified way. As mentioned, CCS also provides a high-level 
web interface - CCDE. The CCDE is based on the 
AngularJS framework (provided by Google) and is 
augmented with a web components framework developed 
in-house and encapsulating common functionality and 
integration with CERN services such as SSO. 
Communication between the Java back-end and the 
AngularJS front-end is implemented using the REST 
architectural pattern. 

CERN CONTROLS CONFIGURATION 
SERVICE 

 

As a core Controls service, the CCS must exhibit a high 
level of availability. Even though CCS downtime does not 
directly impact beam operation, it severely limits the 
means to verify or modify core system configurations. To 
provide the highest possible availability and quality of 
service, each CCS component is implemented with some 
degree of redundancy. For example service-side processes 
are stateless and deployed in a multi-node set-up.  In the 
rare case of a failure for one of the nodes, the system 
remains operational without impacting users. Advanced 
monitoring and notification mechanisms continuously 
check the consistency and status of all service components 
and send alerts in case of any abnormality. This allows 
service managers to react before the CCS becomes 
unavailable. 

Since its inception, the CCS has evolved regularly, in-
synch with the significant evolution of CERN’s accelerator 
complex and multiple sub-systems. During the last 30 
years, new advanced accelerators and major upgrades have 
triggered a need for a more sophisticated and powerful 
configuration platform. The global Controls architecture is 
realised as a layered system, reflected in CCS 
configuration domains, which can be simplified as follows: 

• Low-level aspects covering kernel driver 
configurations and hardware types. 

• Front-End Computers (FEC) with their modules (of 
hardware types, mentioned above), on which, 
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different acquisition and configuration processes 
are running. 

• Software processes which represent physical 
Devices deployed in specific Accelerators, together 
with definitions of their interfaces, known as 
“Device Classes”. 

• Role-based authorisation schemes, both for access 
to the aforementioned Device processes and to high-
level applications. 

• Configuration of Device data acquisitions and 
logging, to have data available for further analysis. 

CONTROLS CHANGES 
 

Every change to Controls configuration, no matter how 
small, may impact one or more other Control system 
components. Due to the overall Controls complexity, 
manual adaptations in related sub-systems to account for 
changes, are highly time consuming and error prone, and 
risk to result in discrepancies between different Controls 
sub-systems. It is therefore crucial, to capture changes, 
notify related services, and even trigger specific actions, in 
an automatic way. 

To ensure that changes are accepted and parsed 
correctly, they are treated as named events which may 
occur during the configuration lifecycle. Each such event 
may be acknowledged, analysed, and propagated to 
appropriate services to trigger necessary actions. Once 
such operations are complete,  the user that triggered the 
change event should be notified of the outcome such as  
success or failure (including relevant details). The 
behaviour described above falls into the software 
architecture paradigm known as an “Event Driven 
Architecture” and aims to address all implications 
provoked by change requests. 

The evolution of physical Controls hardware requires 
corresponding adaptations at various layers of the Control 
system. One example is the meta-data describing the 
programmatic interface of the equipment (“Device 
Classes”, mentioned above) which must naturally evolve 
following the hardware. This process of a Device changing 
Class is called “migration”. It is a critical event in the 
Controls configuration life-cycle, as it may impact a 
number of core Controls sub-systems such as LSA[3] (for 
settings management), NXCALS[4] (for time-series data 
logging), UCAP (for data processing), and end-user 
applications. To control this impact and minimise risks of 
inadvertent changes, the “Controls Configuration Data 
Lifecycle manager” (CCDL) is used. 

A typical example of such a change, would be an 
evolution of a hardware component, such that the meta-
data describing the component’s properties needs to be 
updated with respect to its data type (e.g. from a scalar 
integer to a double array). Such a change needs to be 
properly propagated to other Controls sub-systems to 
assure operational continuity e.g. consistent application of 
settings or data acquisition. The window within which such 

changes are carried out (both in terms of underlying 
hardware and software) is normally limited to either 
Accelerator technical stops or shutdown periods. 

To ensure the correct propagation of changes within the 
CCS and across related Controls sub-systems, a sub-
component of CCDL, the migration “orchestrator” is 
employed. The orchestration engine reacts to the named 
configuration change events and processes them by 
orchestrating the corresponding changes in all related 
Controls sub-systems. This processing must be done in a 
logical order, reflecting how the sub-systems depend on 
one another. End-users are provided with live insights into 
the event processing and are also notified about any 
problems. The outcome of each distinct step in the 
migration processing chain is recorded as a status event. 
Status events are also injected back into the processing 
system for use by the orchestrator for optional conditional 
processing. This solution is deployed in production and 
Table 1 shows the number of processed events in 2020. 

Table 1: 2020 Events Generated Based on User Actions 

 
Considering the long history of the CCS and the need to 

cope with the complexity of the Accelerator Controls 
domain, the CCS architecture and design are tailored to 
solve a wide variety of possible problems in a configurable 
and  data-driven manner. Below, the core CCS components 
are described, together with specific examples of an event-
based definition of business use-cases as seen from the 
perspective of Controls users.  

ARCHITECTURE 
 

The main component of the event-based processing of 
changes in the system is the CCDL - Controls 
Configuration Data Lifecycle manager. The manager acts 
as an orchestration and integration point amongst core CCS 
components (CCDA – Controls Configuration Data API, 
CCDE – Controls Configuration Data Editor) and  a limited 
number of clients using direct database access with 
dedicated schemas or PL/SQL APIs. The CCDL is 
composed of two main components: CCLC (the Lifecycle 

TabEvent Occurrences 

Device migration (change of Class) 21k 

Device attribute changed 280k 

Device added 100k 

Device deleted 90k 

NXCALS subscription changed 250k 

NXCALS subscription added 360k 

NXCALS subscription deleted 130k 
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manager) and the so-called “integrated Device migrator”. 
Supporting components of the architecture include: 

• Apache Kafka – a distributed data store optimised 
for ingesting and processing streaming data in real-
time. 

• Oracle AQ (Advanced Queuing) – a proprietary 
feature of Oracle databases, which delivers 
database-integrated message queuing functionality. 

• System events – representing configuration 
changes, are modelled as simple tuple objects, 
generated at the persistency (database) layer.  

System events, modelled as data tuples, consist of meta-
data such as operation types, timestamps, aggregation 
topics (i.e. database transaction ID), as well as the event 
data (i.e. configuration value before and after the change). 
The events are designed to be sufficiently rich for the 
processing system to minimise the need for querying 
additional data. At the database level the events are stored 
in log tables, structured with attention to data partitioning 
and indexing. In normal operations of the system, events 
are processed continuously which minimises the number of 
physical reads at the level of the database, thus contributing 
to overall performance operation of the system. In case 
when historical events need to be processed, indexing and 
table partitioning at the level of event type and creation 
timestamp lowers latency when accessing the data. 

The decision to use Apache Kafka was driven by a 
frequent need for a loosely coupled integration of 3rd party 
clients with CCS (e.g. other Controls sub-systems). System 
events are fed to Kafka and made readily available to all 
subscribed clients, including internal clients like CCLC. 
This solution enabled a plug-and-play model (see Fig. 1), 
where external clients may integrate only at the level of 
Kafka data-objects (key-value pair tuples or JSON 
objects), or if necessary use a complete CCLC client API, 
tailored to a specific client domain (e.g. NXCALS or 
UCAP).  

CONCLUSIONS 
 

Before CCDL was put in place, many of the 
configuration updates described above needed to be 
performed manually by a limited number of system 
experts. The manual nature meant that users had to request 
changes well in advance, such that experts of each of the 
possibly impacted Controls sub-systems had sufficient 
time to internally verify what would be the impact, and if 
necessary, prepare appropriate steps to mitigate risks and 
ensure a global consistency of the distributed configuration 
elements. This situation required careful planning and 
coordination to minimise errors and discrepancies between 
Controls sub-systems. 

The introduction of CCDL helped to considerably 
reduce support and manual interventions. All changes can 
now be executed directly by the users, at any moment, 
without a need for specific actions from the various 
Controls sub-system experts. Feedback gathered during the 
last 3 years since the automatic Device migration process 
has been in place, shows that the work of the users has been 
simplified and became more efficient. At the same time, 
thanks to the fully automated process, the time when the 
global Control system configuration is in an inconsistent 
state, has been reduced to a minimum. 

Reduction of the support and automatization of the 
configuration process is an example of a continuous 
evolution of the system. The increasingly dynamic nature 
of the CERN Accelerator Controls manifested by a 
growing number of data-driven components, indicates a 
need for software solutions which in place of customised 
use-case specific code, rely on more abstract and agile 
solutions. One possible solution is to deliver a platform 
which allows users to define complex high-level events 
based on atomic events generated by the system. While the 
atomic events represent fundamental changes occurring in 
the system (e.g. a new Device created), the complex event 
may be used to indicate patterns of behaviour. For 

Figure 1: Diagram of event processing with CCDL. 
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example, a consecutive set of new Device created and 
Device renamed events may represent a complex event 
such as swapping of Devices by name while retaining their 
associated configuration intact. Discovery of such patterns 
may be achieved with Complex Event Processing engines, 
for example using Esper CEP framework [5]. The CEP 
approach provides users with a high degree of freedom in 
covering different use cases, including dynamic injection 
of new types of events, without noticeably increasing the 
amount of support needed from various related Controls 
sub-system experts.  

In the mid-term perspective we plan to integrate ESPER 
CEP engine with CCDL and consequently expose means 
to define complex events and EPL (Event Processing 
Language) queries through a high-level graphical user 
interface as a part of CCDE. This will provide all the users 
of the Controls system configuration the means to define 
new events and give a possibility to look for patterns of 
events occurring in the system. With such extensions as 
well as described earlier stream processing engine like 
Apache Kafka and high-level API like CCDA, we aim to 
establish practical means to realise a business intelligence 
solution tailored to the needs of the CERN Accelerator 
controls and its users, while remaining agnostic to the 
CERN specific concepts. 
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