
CERN CONTROLS CONFIGURATION SERVICE – EVENT-BASED
PROCESSING OF CONTROLS CHANGES

B. Urbaniec, L.Burdzanowski, CERN, Geneva, Switzerland

Abstract

The Controls Configuration Service (CCS) is a core

component of the data-driven Control System at
CERN. Built around a central database, the CCS provides
a range of client APIs and graphical user interfaces (GUI)
to enable efficient and user-friendly configuration of
Controls. As the entry point for all the modifications to
Controls system configurations, the CCS provides the
means to ensure global data coherency and propagation of
changes across the distributed Controls sub-systems and
services. With the aim of achieving global data coherency
in the most efficient manner, the need for an advanced data
integrator emerged.

The “Controls Configuration Data Lifecycle manager”
(CCDL) is the core integration bridge between the
distributed Controls sub-systems. It aims to ensure
consistent, reliable, and efficient exchange of information
and triggering of workflow actions based on events
representing Controls configuration changes. The CCDL
implements and incorporates cutting-edge technologies
used successfully in the IT industry. This paper describes
the CCDL architecture, design and technology choices
made, as well as the tangible benefits that have been
realised since its introduction.

INTRODUCTION

The Controls Configuration Service (CCS) is a core
component of CERN’s Control system, serving as a
central point for the configuration of all Controls sub-
domains. CCS ensures that the data provided to other
services is done in a coherent and consistent way. CCS is
used by a diversified group of users, including installation
teams (configuring Controls hardware), equipment experts
(configuring processes and applications), and Accelerator
operators. All CCS users interact with the service at
various points in time, to verify or define appropriate
configurations.

The service is built around a centralised Oracle database
server. To minimise downtime of the system and risks of
negative impact to the users, the server is deployed in a
cluster as 2 redundant nodes, providing 99.9% availability.
The data stored in the CCS database (CCDB) may be
accessed via a dedicated high level web-based editor -
Controls Configuration Data Editor (CCDE) [1]. At the
same time the service also provides advanced Java and
Python REST APIs which allow users to efficiently
configure, modify and maintain configuration data in a
programmatic way.

The CCS service has been an integral part of the Controls
system for many years. The first version was created in the
late 80s, during operations of the Large Hadron Collider’s
predecessor - The Large Electron-Positron Collider (LEP).
Since that time the service has evolved and been
consolidated multiple times. The last renovation started 4
years ago [2] to match the CCS technology stack with
technologies widely used in the software industry. All CCS
components are based on Java (currently version 11) and
the Spring framework. From the Spring framework, Spring
Boot has been selected as a solution to establish a common
architecture among all the applications in a simplified and
unified way. As mentioned, CCS also provides a high-level
web interface - CCDE. The CCDE is based on the
AngularJS framework (provided by Google) and is
augmented with a web components framework developed
in-house and encapsulating common functionality and
integration with CERN services such as SSO.
Communication between the Java back-end and the
AngularJS front-end is implemented using the REST
architectural pattern.

CERN CONTROLS CONFIGURATION
SERVICE

As a core Controls service, the CCS must exhibit a high
level of availability. Even though CCS downtime does not
directly impact beam operation, it severely limits the
means to verify or modify core system configurations. To
provide the highest possible availability and quality of
service, each CCS component is implemented with some
degree of redundancy. For example service-side processes
are stateless and deployed in a multi-node set-up. In the
rare case of a failure for one of the nodes, the system
remains operational without impacting users. Advanced
monitoring and notification mechanisms continuously
check the consistency and status of all service components
and send alerts in case of any abnormality. This allows
service managers to react before the CCS becomes
unavailable.

Since its inception, the CCS has evolved regularly, in-
synch with the significant evolution of CERN’s accelerator
complex and multiple sub-systems. During the last 30
years, new advanced accelerators and major upgrades have
triggered a need for a more sophisticated and powerful
configuration platform. The global Controls architecture is
realised as a layered system, reflected in CCS
configuration domains, which can be simplified as follows:

• Low-level aspects covering kernel driver
configurations and hardware types.

• Front-End Computers (FEC) with their modules (of
hardware types, mentioned above), on which,

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV043

Software Technology Evolution

MOPV043

253

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

different acquisition and configuration processes
are running.

• Software processes which represent physical
Devices deployed in specific Accelerators, together
with definitions of their interfaces, known as
“Device Classes”.

• Role-based authorisation schemes, both for access
to the aforementioned Device processes and to high-
level applications.

• Configuration of Device data acquisitions and
logging, to have data available for further analysis.

CONTROLS CHANGES

Every change to Controls configuration, no matter how
small, may impact one or more other Control system
components. Due to the overall Controls complexity,
manual adaptations in related sub-systems to account for
changes, are highly time consuming and error prone, and
risk to result in discrepancies between different Controls
sub-systems. It is therefore crucial, to capture changes,
notify related services, and even trigger specific actions, in
an automatic way.

To ensure that changes are accepted and parsed
correctly, they are treated as named events which may
occur during the configuration lifecycle. Each such event
may be acknowledged, analysed, and propagated to
appropriate services to trigger necessary actions. Once
such operations are complete, the user that triggered the
change event should be notified of the outcome such as
success or failure (including relevant details). The
behaviour described above falls into the software
architecture paradigm known as an “Event Driven
Architecture” and aims to address all implications
provoked by change requests.

The evolution of physical Controls hardware requires
corresponding adaptations at various layers of the Control
system. One example is the meta-data describing the
programmatic interface of the equipment (“Device
Classes”, mentioned above) which must naturally evolve
following the hardware. This process of a Device changing
Class is called “migration”. It is a critical event in the
Controls configuration life-cycle, as it may impact a
number of core Controls sub-systems such as LSA[3] (for
settings management), NXCALS[4] (for time-series data
logging), UCAP (for data processing), and end-user
applications. To control this impact and minimise risks of
inadvertent changes, the “Controls Configuration Data
Lifecycle manager” (CCDL) is used.

A typical example of such a change, would be an
evolution of a hardware component, such that the meta-
data describing the component’s properties needs to be
updated with respect to its data type (e.g. from a scalar
integer to a double array). Such a change needs to be
properly propagated to other Controls sub-systems to
assure operational continuity e.g. consistent application of
settings or data acquisition. The window within which such

changes are carried out (both in terms of underlying
hardware and software) is normally limited to either
Accelerator technical stops or shutdown periods.

To ensure the correct propagation of changes within the
CCS and across related Controls sub-systems, a sub-
component of CCDL, the migration “orchestrator” is
employed. The orchestration engine reacts to the named
configuration change events and processes them by
orchestrating the corresponding changes in all related
Controls sub-systems. This processing must be done in a
logical order, reflecting how the sub-systems depend on
one another. End-users are provided with live insights into
the event processing and are also notified about any
problems. The outcome of each distinct step in the
migration processing chain is recorded as a status event.
Status events are also injected back into the processing
system for use by the orchestrator for optional conditional
processing. This solution is deployed in production and
Table 1 shows the number of processed events in 2020.

Table 1: 2020 Events Generated Based on User Actions

Considering the long history of the CCS and the need to

cope with the complexity of the Accelerator Controls
domain, the CCS architecture and design are tailored to
solve a wide variety of possible problems in a configurable
and data-driven manner. Below, the core CCS components
are described, together with specific examples of an event-
based definition of business use-cases as seen from the
perspective of Controls users.

ARCHITECTURE

The main component of the event-based processing of
changes in the system is the CCDL - Controls
Configuration Data Lifecycle manager. The manager acts
as an orchestration and integration point amongst core CCS
components (CCDA – Controls Configuration Data API,
CCDE – Controls Configuration Data Editor) and a limited
number of clients using direct database access with
dedicated schemas or PL/SQL APIs. The CCDL is
composed of two main components: CCLC (the Lifecycle

TabEvent Occurrences

Device migration (change of Class) 21k

Device attribute changed 280k

Device added 100k

Device deleted 90k

NXCALS subscription changed 250k

NXCALS subscription added 360k

NXCALS subscription deleted 130k

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV043

MOPV043C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

254 Software Technology Evolution

manager) and the so-called “integrated Device migrator”.
Supporting components of the architecture include:

• Apache Kafka – a distributed data store optimised
for ingesting and processing streaming data in real-
time.

• Oracle AQ (Advanced Queuing) – a proprietary
feature of Oracle databases, which delivers
database-integrated message queuing functionality.

• System events – representing configuration
changes, are modelled as simple tuple objects,
generated at the persistency (database) layer.

System events, modelled as data tuples, consist of meta-
data such as operation types, timestamps, aggregation
topics (i.e. database transaction ID), as well as the event
data (i.e. configuration value before and after the change).
The events are designed to be sufficiently rich for the
processing system to minimise the need for querying
additional data. At the database level the events are stored
in log tables, structured with attention to data partitioning
and indexing. In normal operations of the system, events
are processed continuously which minimises the number of
physical reads at the level of the database, thus contributing
to overall performance operation of the system. In case
when historical events need to be processed, indexing and
table partitioning at the level of event type and creation
timestamp lowers latency when accessing the data.

The decision to use Apache Kafka was driven by a
frequent need for a loosely coupled integration of 3rd party
clients with CCS (e.g. other Controls sub-systems). System
events are fed to Kafka and made readily available to all
subscribed clients, including internal clients like CCLC.
This solution enabled a plug-and-play model (see Fig. 1),
where external clients may integrate only at the level of
Kafka data-objects (key-value pair tuples or JSON
objects), or if necessary use a complete CCLC client API,
tailored to a specific client domain (e.g. NXCALS or
UCAP).

CONCLUSIONS

Before CCDL was put in place, many of the
configuration updates described above needed to be
performed manually by a limited number of system
experts. The manual nature meant that users had to request
changes well in advance, such that experts of each of the
possibly impacted Controls sub-systems had sufficient
time to internally verify what would be the impact, and if
necessary, prepare appropriate steps to mitigate risks and
ensure a global consistency of the distributed configuration
elements. This situation required careful planning and
coordination to minimise errors and discrepancies between
Controls sub-systems.

The introduction of CCDL helped to considerably
reduce support and manual interventions. All changes can
now be executed directly by the users, at any moment,
without a need for specific actions from the various
Controls sub-system experts. Feedback gathered during the
last 3 years since the automatic Device migration process
has been in place, shows that the work of the users has been
simplified and became more efficient. At the same time,
thanks to the fully automated process, the time when the
global Control system configuration is in an inconsistent
state, has been reduced to a minimum.

Reduction of the support and automatization of the
configuration process is an example of a continuous
evolution of the system. The increasingly dynamic nature
of the CERN Accelerator Controls manifested by a
growing number of data-driven components, indicates a
need for software solutions which in place of customised
use-case specific code, rely on more abstract and agile
solutions. One possible solution is to deliver a platform
which allows users to define complex high-level events
based on atomic events generated by the system. While the
atomic events represent fundamental changes occurring in
the system (e.g. a new Device created), the complex event
may be used to indicate patterns of behaviour. For

Figure 1: Diagram of event processing with CCDL.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV043

Software Technology Evolution

MOPV043

255

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

example, a consecutive set of new Device created and
Device renamed events may represent a complex event
such as swapping of Devices by name while retaining their
associated configuration intact. Discovery of such patterns
may be achieved with Complex Event Processing engines,
for example using Esper CEP framework [5]. The CEP
approach provides users with a high degree of freedom in
covering different use cases, including dynamic injection
of new types of events, without noticeably increasing the
amount of support needed from various related Controls
sub-system experts.

In the mid-term perspective we plan to integrate ESPER
CEP engine with CCDL and consequently expose means
to define complex events and EPL (Event Processing
Language) queries through a high-level graphical user
interface as a part of CCDE. This will provide all the users
of the Controls system configuration the means to define
new events and give a possibility to look for patterns of
events occurring in the system. With such extensions as
well as described earlier stream processing engine like
Apache Kafka and high-level API like CCDA, we aim to
establish practical means to realise a business intelligence
solution tailored to the needs of the CERN Accelerator
controls and its users, while remaining agnostic to the
CERN specific concepts.

REFERENCES

[1] L. Burdzanowski et al., “CERN Controls Configuration
Service - a Challenge in Usability”, in Proc. 16th Int. Conf.
on Accelerator and Large Experimental Physics Control
Systems (ICALEPCS'17), Barcelona, Spain, Oct. 2017, pp.
159-165.
doi:10.18429/JACoW-ICALEPCS2017-TUBPL01

[2] L. Burdzanowski and C. Roderick, “The Renovation of the
CERN Controls Configuration Service”, in Proc. 15th Int.
Conf. on Accelerator and Large Experimental Physics
Control Systems (ICALEPCS'15), Melbourne, Australia,
Oct. 2015, pp. 103-106.
doi:10.18429/JACoW-ICALEPCS2015-MOPGF006

[3] D. Jacquet, R. Gorbonosov, and G. Kruk, “LSA - the High
Level Application Software of the LHC - and Its
Performance During the First Three Years of Operation”, in
Proc. 14th Int. Conf. on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS'13), San
Francisco, CA, USA, Oct. 2013, paper THPPC058, pp.
1201-1204.

[4] J. P. Wozniak and C. Roderick, “NXCALS - Architecture
and Challenges of the Next CERN Accelerator Logging
Service”, presented at the 17th Int. Conf. on Accelerator and
Large Experimental Physics Control Systems
(ICALEPCS'19), New York, NY, USA, Oct. 2019, pp. 1465-
1469.
doi:10.18429/JACoW-ICALEPCS2019-WEPHA163

[5] Esper FAQ – EsperTech,
https://www.espertech.com/esper/esper-faq

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV043

MOPV043C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

256 Software Technology Evolution

