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Abstract
Programmable Logic Controllers (PLC) are widely used

for industrial automation including safety systems at CERN.
The incorrect behaviour of the PLC control system logic can
cause significant financial losses by damage of property or
the environment or even injuries in some cases. Therefore
ensuring their correct behaviour is essential. While testing
has been for many years the traditional way of validating
the PLC control system logic, CERN developed a model
checking platform to go one step further and formally verify
PLC logic. This platform, called PLCverif, was first released
internally for CERN usage in 2019, is now available to any-
one since September 2020 via an open source licence. In
this paper, we will first give an overview of the PLCverif
platform capabilities before focusing on the improvements
done since 2019 such as the larger support coverage of the
Siemens PLC programming languages, the better support of
the C Bounded Model Checker backend (CBMC) and the
process of releasing PLCverif as an open-source software.

INTRODUCTION
Programmable Logic Controllers (PLC) are widely used

for industrial automation including safety systems at CERN.
The incorrect behaviour of the PLC control system logic can
cause significant financial losses by damage of property or
the environment or even injuries in some cases. Therefore
ensuring their correct behaviour is essential. While testing
has been for many years the traditional way of validating
the PLC control system logic, it is often not sufficient as the
sole verification method: testing, even when automated, can
not be exhaustive, thus can not guarantee the correctness
of a logic. Some types of requirements, such as safety (i.e.
an unsafe state can never be reached) or invariant (formulas
which shall be true over all possible system runs), can be
very difficult, if not impossible, to test. Model checking is a
formal verification technique which complements the testing
activities in order to fully validate and verify a PLC control
system logic. Model checking assesses the satisfaction of a
formalised requirement on a mathematical model of the sys-
tem under analysis. It checks the requirement’s satisfaction
with every input combination, with every possible execution
trace. In addition, if a violation is found, a trace leading
to the violated requirement is provided. The main hurdle
to the widespread usage of model checking within the PLC
community is twofold: (1) the mathematical model repre-
senting the system under analysis can be difficult to write
and requires in-depth understanding of the model checking
tools; and (2) many real-life PLC logics are too complex and
face the state-space explosion problem, i.e. the number of
∗ ignacio.david.lopez.miguel@cern.ch

possible input combinations and execution traces is too big
to be exhaustively explored.

In 2019 CERN developed the PLCverif platform with
the goals of easing the usage of model checking tools for
the PLC developers community by automating the trans-
lation of the PLC programs to their mathematical models
and to implement several abstraction algorithms to limit the
state-space explosion problem. Since September 2020, the
platform has been released under an open source license to
foster the usage and the development of the tool within the
PLC community. The objective of this paper is to give a
status of the PLCverif platform focusing on the latest de-
velopments improving the usability and performance of the
tool.

The rest of the paper is organized as follows: Section
PLCverif Overview gives an overview of PLCverif to better
understand the scope and the architecture of the platform.
Section Open Source Release focuses on the open source
release of PLCverif by describing the process of releasing the
source code and presenting the code organization. Finally
sections Latest developments and On-going Challenges and
Developments present respectively the latest and ongoing
developments.

PLCverif OVERVIEW
This section gives an overview of the PLCverif plat-

form [1] before presenting the latest developments.

Verification Workflow
Out of the box, PLCverif offers a model checking work-

flow for the analysis of PLC programs. The verification
workflow is shown in Fig. 1 and it has the following main
steps:

1. PLC program parsing. PLCverif parses the PLC pro-
gram (located in one or several files) to be analysed. By
choosing the entry point of the verification, the analysis
can be limited to a part of the program. The parsed
PLC program is automatically translated into a mathe-
matical, control flow-based representation, producing
so-called Control Flow Automata (CFA). This precise
description will serve as the basis for the analysis.

2. Requirement representation. The user should de-
scribe the precise requirement to be checked. This,
however, does not mean that the user needs to describe
the requirement using mathematical formulae. Cur-
rently, two requirement description methods are sup-
ported:

• Assertion-based requirements: special comments
in the source code (e.g. //#ASSERT On<>Off)
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Figure 1: Formal verification workflow of PLCverif

can describe expressions (invariants) which are
expected to be always satisfied at a given loca-
tion of the program. The verification job will
then check if the violation of any of the selected
assertions is possible.

• Pattern-based requirements: the user chooses a re-
quirement pattern that is a precisely-phrased plain
text sentence with some placeholders, e.g. “If 𝛼
is true at the end of the PLC cycle, then 𝛽 should
always be true at the end of the same cycle.”. The
gaps in the requirement pattern (𝛼 and 𝛽 in the
previous example) shall be filled with expressions
over the PLC variables. For each requirement pat-
tern, a defined temporal logic representation is
defined which will be used in the next steps.

If needed, new types of requirement representations
can be defined, adapted to the specific needs.

3. CFA reductions. The formal, precise CFA represen-
tation of the program, including also the requirement,
may need to be reduced in order to make the verifica-
tion feasible and efficient. These reductions will not
change the verification result for the given requirement;
however, they may remove parts of the program which
do not influence the result of the currently checked
requirement [2].

4. External model checking. The model checking itself
is performed by widely used model checker tools. In
this step, (i) the reduced CFA is translated into the input
syntax of the chosen model checker tool, (ii) the model
checker tool is executed, and (iii) its output, notably the
counterexample if available, is parsed to PLCverif’s
internal representation.
Currently the following external model checkers are
supported: NuSMV [3], nuXmv [4], Theta [5] and

CBMC [6]. These model checkers have different
strengths and weaknesses. In addition, not every feature
is supported by every model checker.

5. Reporting. The last step of the formal verification
workflow is to produce verification reports. Some of
these reports are in human-readable form and target the
user of PLCverif. Other reports are machine-readable
and serve as descriptions for the execution environment
or as artifacts for later summary reports.

OPEN SOURCE RELEASE
PLCverif is available publicly since September 2020 along

with its source code under an EPL-2.01 license on GitLab2.
This section presents the reasons for open sourcing PLCverif,
as well as the process to choose the open source license and
the code organization as found in the GitLab repository.

Motivations
PLCverif has been entirely developed at CERN and there-

fore fits CERN’s needs. Nevertheless, the platform could
be beneficial to two different communities outside CERN:
the PLC developers community and the model checker com-
munity. For PLC developers, PLCverif could be used out
of the box if the language used is among the ones already
supported, i.e. Siemens Statement List (STL) and Siemens
Structure Control Language (SCL). The current coverage3

of Siemens STL and SCL in PLCverif is currently at 66%
and 40%, respectively, for S7-300/400 PLCs, and at 55%
and 25%, respectively, for S7-1200/1500 PLCs. This covers
most of the functionalities of PLC programs developed at
CERN as the instructions implemented represent the core of
those languages. However, support for a missing instruction
could be easily added if needed. Similarly, the support of a
new programming language could also be developed taking
as a reference the current implementation for the Siemens
languages. For the model checking community, PLCverif
offers the possibility to be integrated in a platform verifying
real-life PLC code: it is a great opportunity for this com-
munity to test new algorithms or improvements of existing
model checkers.

License Selection
From the different open source licenses available, the

choice has been made to release the PLCverif platform
source code under the Eclipse Public License 2.0 (EPL4).
This license is similar to the GNU General Public License
(GPL5) but allows to link the code to proprietary applica-
tions: it then allows to use and extend the tool, even for
1 https://www.eclipse.org/legal/epl-2.0/
2 https://gitlab.com/plcverif-oss
3 Coverage was calculated as the number of instructions that are imple-

mented in PLCverif vs. the number of instructions in a given grammar
for a given PLC. Binary arithmetic operations like addition or subtraction,
and binary logic operations like conjuntion or disjuntion are not taken
into account when the coverage for SCL is calculated. That is the main
reason why the figures for SCL are much lower than for STL.

4 See footnote 1.
5 https://www.gnu.org/licenses/gpl-3.0.en.html
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commercial purposes. The reason for choosing the EPL-2.0
license was driven by the fact that is a weak copyleft license,
but also that most of the components used by PLCverif are
already under the EPL-2.0 (more details in [1]).

GitLab Repository
The PLCverif platform has been developed within the

Eclipse ecosystem: it is mainly written in Java (Java 11),
Xtend and Xtext. The modularity is assured via the split of
the code among several distinct projects and Eclipse plugins.
The main projects of the platform are:

• PLCverif Backend6 is the core of the PLCverif platform
and is responsible for all the CFA manipulations rep-
resented in Fig. 1. It is also responsible for interacting
with the external model checkers via dedicated Eclipse
plugins.

• Siemens Support7 is responsible for the parsing of the
Siemens STL and SCL code, i.e. transforms the PLC
user code into the PLCverif internal CFA representa-
tion.

• PLCverif Frontends8,9 are the visible parts from a user
point of view. The GUI project provides a graphical
application embedding a PLC code editor, a specifica-
tion requirement editor and a report visualization part.
The CLI project is the way to execute the PLCverif
workflow via the command line allowing the execution
of headless verification jobs such as in a CI/CD (Con-
tinuous Integration / Continuous Deployment) pipeline
for PLC code.

LATEST DEVELOPMENTS
Since the publication of [1] in 2019, several improvements

have been made. Some of them are summarized below:

• The C code used to run CBMC was originally pro-
duced directly converting the intermediate model to
a C code using goto instructions. CBMC is however
not efficient with this kind of programs since it is not
able to find loops. This method has been changed in
order to produce a structured C code without gotos,
being able to efficiently use the option –partial-loops
of CBMC. With this option, CBMC will execute loops
only partially. The disadvantage of this option is that
the counterexample might be spurious.

• In order to confirm the feasibility of a counterexample
produced by PLCverif when a property is violated, it is
common to try to reproduce that situation in a real PLC
or via simulation. In order to automate this process, it
is now possible to automatically generate a file with the

6 https://gitlab.com/plcverif-oss/cern.plcverif
7 https://gitlab.com/plcverif-oss/cern.plcverif.plc.
step7

8 https://gitlab.com/plcverif-oss/cern.plcverif.gui
9 https://gitlab.com/plcverif-oss/cern.plcverif.cli

values of all the variables that can be used as an input
to the simulator or to the real PLC.

• Safety programs in Siemens are written in function
block diagram (FBD) language. After exporting them
with OpennessScripter10, an XML file is produced. A
new feature in PLCverif has been developed in order to
import those XML files into PLCverif translating them
into STL code.

• The coverage of Siemens programs was increased both
for STL and SCL. More built-in functions from TIA
portal were included.

• Support of latest Theta version was included. Theta
is being actively developed and new releases have
been launched. In order to keep up with the latest
improvements, PLCverif has been adapted to correctly
parse Theta output. Currently, PLCverif supports Theta
v2.21.0.

• The intermediate model Control Flow Instance had the
limitation that it could not be used with dynamic index-
ing arrays. However, Theta supports this feature and
PLCverif has been adapted to generate Theta programs
with dynamic indexes.

• The grammar implemented in PLCverif to parse
Siemens PLC programs has been extended to include
partial support of Schneider PLC programs.

• Upgrade to Java 11. PLCverif was originally developed
in Java 8. However, in order not to lose support and
to be able to run the latest versions of some model
checkers (Theta), it was needed to upgrade to Java 11.

ON-GOING CHALLENGES AND
DEVELOPMENTS

Simplification of Numeric Variables
As observed in the large code base of CERN industrial

PLC systems, one of the main challenges to perform PLC
model checking is the state-space explosion originated by the
inclusion of numeric variables. PLCverif represents input
variables as non-deterministic in the intermediate model.
This means that a 16-bit integer is going to have 216 ≊ 7⋅104

possible values that the model checker needs to explore.
There exist some techniques to handle this type of vari-

ables, such as counterexample-guided-abstraction refine-
ment (CEGAR) [7] or Satisfiability Modulo Theories (SMT).
However, other approaches to directly simplify the PLCverif
intermediate model are under investigation, highly improv-
ing the performance of the NuSMV model checker [8].

Iterative Verification
It is common practice to have different modules within

PLC projects (see [9] for an example). Some of these projects
10TIA Portal Openness API.
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are too large to be verified by PLCverif yet. However, if the
program is split into parts, the verification cases are smaller
and can be successfully executed. If it would be possible to
combine all the results together, it would be feasible to verify
these large programs. To this end, different compositional
verification approaches have been analysed but no generic
method has been found yet to be applied to PLC projects.

Nonetheless, other abstraction techniques are under con-
sideration, such as abstracting away the different modules.
With this approach, a verification case is executed with all
the functions abstracted away (all their outputs are going to
be non-deterministic). If the property is satisfied, the origi-
nal program satisfies that property too. On the other hand, if
it is violated, one needs to check if the abstracted functions
can produce the outputs leading to the violation. If it is
not possible, a function is concretized (it comes back to its
original form) and a new verification case is executed. This
process is continued until a feasible counterexample is found
or until all functions are concretized (coming back to the
original program). Different strategies and improvements
can be investigated for this method.

Counterexample Analysis
When a program is verified and the result is a violation of

the property, a counterexample is given by PLCverif. If the
program is composed of several variables and they interact
with each other (see [9] for an example), the counterexample
is going to be large. Therefore, it will be difficult to analyse
what part of the code made the property fail.

Some investigations have been done in this direction in
order to point the user to possible locations in the code that
have an impact on the final assertion. This way, the user
would not need to go through all the code but just focus on
the highlighted parts.

Other
Since the release of PLCverif, there has been some

progress in the development of more efficient model check-
ers. As already explained previously, the latest version of
Theta has been integrated into PLCverif. However, although
CBMC is efficient, it is a SAT-based model checker that uses
few abstraction techniques. Therefore, an SMT-based model
checker like ESBMC [10] could improve the performance
of CBMC.

CONCLUSION
This paper presented the latest developments of the

PLCverif platform to formally verify PLC programs. The
developments can be grouped into two main lines of work:

• Promoting and easing the use of PLCverif by making
it open source, by supporting more PLC manufacturers
(i.e. Schneider Electric), and by guiding the user to
the root cause of an issue when a property is violated
(counterexample analysis).

• Improving the performance of the verification time by
simplifying numerical variables without loosing mean-
ingful information and by implementing an iterative
verification process allowing to verify even more com-
plex applications.

All the different developments presented in this paper are
in different stages of maturity and are in the pipeline to be
included into PLCverif. In addition some new developments
will be carried on to support Schneider safety programs and
to integrate new model checkers such as ESBMC.
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