©=22 Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-MOPV041

MODERNISATION OF THE TOOLCHAIN AND CONTINUOUS
INTEGRATION OF FRONT-END COMPUTER SOFTWARE AT CERN

P. Mantion', S. Deghaye, L. Fiszer, F.Irannejad, J. Lauener, M. Voelkle
CERN, 1211 Geneva 23, Switzerland

Abstract

Building C++ software for low-level computers
requires carefully tested frameworks and libraries. The
major difficulties in building C++ software are to ensure
that the artifacts are compatible with the target system's
(OS, Application Binary Interface), and to ensure that
transitive dependency libraries are compatible when
linked together. Thus developers/maintainers must be
provided with efficient tooling for friction-less
workflows: standardisation of the project description and
build, automatic CI, flexible development environment.
The open-source community with services like Github
and Gitlab have set high expectations with regards to
developer user experience. This paper describes how we
leveraged Conan and CMake to standardise the build of
C++ projects, avoid the "dependency hell" and provide an
easy way to distribute C++ packages. A CI system
orchestrated by Jenkins and based on automatic job
definition and in-source, versioned, configuration has
been implemented. The developer experience is further
enhanced by wrapping the common flows (compile, test,
release) into a command line tool, which also helps
transitioning from the legacy build system (legacy
makefiles, SVN).

INTRODUCTION

Front-End Computer Software Development at
CERN

CERN's Front-End Computers (FECs) are disk-less
computer crates which host electronic cards connected on
a back-plane. The software running on these computers
typically uses a framework such as Front-End Software
Architecture (FESA) [1,2] to interface with:

« The upper layer of the control system (settings
management, timing, network (Remote Device
Access (RDA3) protocol [3]), logging, post-mortem,
machine protection, etc.)

 The cards' driver (C library) to drive the equipment.

« The OS (Linux, CentOS 7 with RT kernel) and
framework (FESA) are designed to provide near real-
time execution of the tasks through scheduling,
thread priorities, and optimisation: this is a strong
reason (amongst others), for using a performance-
oriented language like C++ to build the software.

The production FECs run on CentOS 7, so the software
must be built for that target, ensuring compatibility with
the system's libraries (especially libc) and ABI (changes
in ABI for C++11 support).

Software built using the FESA framework consists of
an executable that is statically linked against the

T pierre.mantion@cern.ch

MOPV041

[\)
S
[}

framework's libraries (versioned headers and .a archive
files). The framework libraries themselves depend on a
collection of middleware libraries provided by different
teams across different groups.

The FESA framework is mostly used by equipment
developers who are not full-time software engineers. As
such, the framework providers aim to offer tooling that
promotes best practices (e.g. source code versioning,
releasing, tagging) and minimises human errors.

NEED FOR MODERNISATION

After almost two decades of building C++ software
with Makefiles, a well-deserved modernisation was
needed. A Continuous-Integration (CI) solution, based on
a shared central Bamboo Server instance, was put in place
almost ten years ago. A general move away from Bamboo
to Jenkins or Gitlab CI for Controls software also needed
to be taken into consideration. Additional objectives were
to ensure that the new solution provides a better
dependency management and ensure a smooth transition
for our users.

Dependency and Toolchain Management

The correct execution of FEC software requires the
binaries to be built using consistent versions of the
dependencies. At the lowest level, this means that
versions of the dependent libraries should be both binary
and functionally compatible. However, a complex
dependency graph means it is not easy to ensure,
especially if no compilation/linking errors are raised at
build time. Dependency management entails two aspects:

1. Knowing where to find/store artifacts (header /
library files) from the build system.

2. Being able to check the consistency of
dependencies and versions in the dependency
graph.

Beyond ensuring production software is built correctly,
strong dependency management is very useful to the
developer. When working with local copies of a sub-set
of a dependency graph, developers are one step away
from so-called "dependency hell". Without automatic
dependency management developers need to ensure that
all libraries used locally are compatible, which entails
editing makefiles and building/rebuilding lots of
dependencies before having a working setup. Compilation
time in such cases is not negligible. The process is also
error prone, often requiring to re-build several
dependencies after each correction. Figure 1 highlights
the difficulty of modifying dependencies by hand by
showing the complexity of the dependency graph for a
representative example of FEC software.

Software Technology Evolution

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISSN: 2226-0358

ISBN: 978-3-95450-221-9

N

fesa-core-cern/8.2.1

accsoft-ds- server cern,"Z l 1

accsoft-ds- server,’Z 1.1

‘ ?‘ accsoft-ds-transport- rdaS_n’Z 1.1 '

(L

cmw-log/4.0. 1

accsoft-ds- modeh’Z 1.0

x.—- 7

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-MOPV041

—_—

fesa core/8.2.1

cmw-directory-client/4.1.1

Figure 1: example of dependency graph for a FEC software (cropped)

Binary compatibility of the dependency libraries
requires building all dependencies with compatible
toolchains (compiler tools and settings, including libc and
C++11 ABI [4]). The archive file (.a) artifacts of
dependencies can be used by the software that is
including them without many checks regarding
compatibility.

New C++ standards require more recent compilers, but
the ABI must still be compatible with the runtime
environment. The CentOS7 toolchain (gcc 4.8, "old" ABI
[4]) is the current standard at CERN, but production
software can also be released using a more recent
compiler (gcc 7). Since CentOS 7 was released several
years ago (2014) a transition to a new supported toolchain
must be anticipated to ease equipment groups migration
efforts and ensure smooth operations.

The rest of this paper will describe how Conan [5] and
CMake [6] can be leveraged to meet the aforementioned
challenges and objectives, and improve developer
experience.

Introduction of CMake as a Modern Build Tool

While Make is still a standard way of building
software, it is a fairly low-level tool. CMake brings
deeper domain knowledge of C/C++ projects, is
extremely popular and very well supported by IDEs, and
has a permissive BSD license.

"CMake is an open-source, cross-platform family of
tools designed to build, test and package software. CMake
is used to control the software compilation process using
simple platform and compiler independent configuration
files, and generate native makefiles and workspaces that
can be used in the compiler environment of your choice.”
— https://cmake.org

As a standard tool with good public documentation,
CMake is favourable over the legacy in-house makefile
hierarchy for a multitude of reasons:

+ Better public documentation means less user support

for FESA framework providers.

Software Technology Evolution

+ Better integration with modern and powerful IDEs
such as CLion increases developer productivity and
satisfaction.

» The experience gained working with CMake is more
valuable for trainees and developers in terms of
transferable skills beyond CERN.

A Command-Line Helper

Although aiming to increase the ease and quality of
development, transitioning to new tools like CMake and
Conan represents a challenge, especially for part-time
developers, where adaptation and practice are required to
master the new tools. To minimise this challenge a
command line (CLI) tool, named Codeine is provided to
simplify and standardise workflows e.g:

» Create a new project with a standard file layout.
* Wrap complex commands.
» Provide safe defaults (CentOS 7 compiler toolchain).
» enforce a consistent release flow (versioning, build,
tag VCS, release location, structure of released
artifacts).
As such, Codeine can help the transition to a new
compiler toolchain by providing setting profiles and
migration helpers.

Renovation of the CI / Testbed

Tooling that can ensure a correct and reproducible build
by design does nothing to help avoid functional failures.
Testing the software is critical and making the test
feedback loop as short as possible increases development
efficiency. Having convenient tooling to setup and run
tests helps ensure that tests are written, ran and results
checked. Continuous Integration (CI) has been a standard
practice in software development for a long time, and
supporting tooling for it is evolving.

CERN's front-end software is well tested by an
extensive collection of tests built over years,
automatically executed from an ageing Bamboo platform
[7]. Besides obsolescence of this platform (licence
renewal, end of life support from Atlassian [8]), new

MOPV041
243

©= Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

paradigms such as storing test job configuration together
with the versioned source code have appeared and make
developers' lives easier, by automating the configuration
of the test plans / jobs. This approach saves thousands of
clicks in the Bamboo interface to configure the dozens of
CI jobs.

MODERNIZATION OF THE
DEVELOPMENT ENVIRONMENT

Legacy Environment

The FEC software development environment at CERN
(Figure 2) is tightly coupled to a Network File System
(NFS) and to Virtual Machines (VPCs) that are setup for
FEC development. The typical developer connects to their
VPC and runs a dedicated distribution of the Eclipse IDE
to develop. The NFS is mounted automatically on the
developer VPCs. The development tools and
dependencies (IDE, makefiles, dependent libraries) are
either hosted on NFS, or depend on data or binaries
hosted there.

CERN network
. ’ Developer Virtual Machine

—Jp- toolchain 17— IDE (Eclipse)
= compiler, linker

system libs Tools: make, git

P dependencies artifacts ————
binaries/headers

. symlinks]
makefiles hierachy €¢——

Figure 2: High-level view of the legacy development
environment

The in-house makefiles provide build and release
functionality, which is possible by knowing the layout of
the dependency artifacts and the toolchain location on
NFS. It knows the base path for artifacts (headers/libs) at
build time, as well as where to store an artifact upon
release. There is no enforcement of dependency
consistency, nor of toolchain/compiler settings. As it
predates Git, it only supports SVN.

This setup makes it easy to provide a functional
development environment to the developer, but at the cost
of flexibility:

» The development machine requires access to NFS,
which is accessible only from the CERN network.

+ Connecting to the development VPC is inconvenient
(VNC, ssh -X), especially when the network access
is with reduced bandwidth (e.g. teleworking), or
when using multiple screens (VNC limitations).

* The custom layout of the dependencies folder on
NFS makes it incompatible with most standard tools
(IDEs, build systems) without extra integration work
and project metadata duplication.

Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

, MOPV041
244

=g

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-MOPV041

* The need to access NFS makes offline development
or CI on the cloud either impossible or very
inefficient.

» The Eclipse IDE for C++ is falling behind other C++
IDEs in terms of features and ergonomics (e.g.
CLion, QtCreator, VSCode)

Modernizing the developer's experience entails keeping
the ease of access of the development environment, while
ensuring the continuity and quality of production artifacts.
Regarding the development tools, that means providing
more flexibility (e.g. offline work, local toolchain, choice
of modern IDE, etc.). On the CI side, it means an easy
initial setup and no redundant configuration tasks, as well
as support for modern development workflows based on
branches and merge requests.

Modernization of the Development Tools

Replacing the makefile hierarchy with CMake brings
standardisation to what was an in-house custom project
structure. Moreover most C++ IDEs have good support
for CMake projects, thus enabling much better IDE
support out of the box.

Alongside CMake, Conan is used to alleviate other pain
points of the legacy setup.

"Conan is a MIT-licensed, Open Source package
manager for C and C++ development, allowing
development teams to easily and efficiently manage their
packages and dependencies across platforms and build
systems." - https://conan.io

» Conan describes package dependencies precisely in
its recipe file (a text or python file called ‘conanfile.
[txt/py]’), and is able to check the consistency of the
versions in the dependency graph, thus avoiding the
"dependency hell".

» Conan enforces strong but configurable versioning of
binary packages. The binary package's ID includes a
hash of compiler settings to ensure binary
compatibility of the produced artifacts

* Through the given metadata, Conan provides
convenient ways to either fail a build if a dependency
cannot be satisfied (wrong version, wrong
toolchain/compiler settings), or build the dependency
from source

+ Conan can package binary artifacts and share them
through Conan repositories. Binary packages can be
downloaded and build artifacts uploaded via
HTTP(S) with appropriate authentication and
authorization. Conan repositories are implemented
by various products, including Artifactory, Gitlab,
Conan-server, Nexus. With no need for NFS access
anymore, cloud and offline builds are much easier.

+ Setting up a local build environment for a project
with arbitrary dependencies is as simple as running
"conan install"

Renovation of the CI and Testbed

The decision to move away from Bamboo was
triggered by the need to migrate to a newer version, and to

Software Technology Evolution

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

renew the licenses. Migration would have been a
significant effort that already justified considering other
platforms. Two options were evaluated, both already used
at CERN and both without extra license fees: Jenkins
(open-source) and Gitlab CI (deployed globally by the
CERN IT department).

The legacy version of Bamboo in use so far required
many slow interactions with the user interface to
configure jobs and it had limited support for merge
requests and branches. Therefore, the renovation was also
an occasion to benefit from features brought by more
modern tools. Below is a list of features expected from a
CI platform:

* In-code configuration (.gitlab-ci.yml / JenkinsFile)
and auto-configuration (zero-click) of the CI jobs

» Support for complex pipelines (serial and parallel
stages, optional stages)

+ Automatic support for branches and merge requests

« Support for triggers (an upstream jobs triggers the
build of a downstream dependent job)

+ Support for custom agents/executors

+ Access rights management, integration with CERN's
SSO

» Support for branch heavy workflows (e.g. libA on
branch bl will automatically pick up dependencies
on the bl branch if it exists)

IMPLEMENTATION STORIES, LESSONS
LEARNT

The Bamboo to Jenkins Story

In terms of features, both Gitlab CI and Jenkins offer
all basic features of a CI platform. What tipped the
balance in favour of Jenkins was the fact that it is open-
source, and not dependent on licenses from Gitlab. By
using an open-source product we limit the risk of having
features moved behind a higher-priced licence tier in the
future. However, deploying dedicated Jenkins instances
means additional work to build and maintain them versus
the IT-managed Gitlab CI platform. Gitlab integrates
vertically a lot of features that could be useful but which
increase vendor lock-in (e.g. docker/Conan registries).
The documentation of Gitlab is more complete and much
better structured than that of Jenkins, especially regarding
the domain specific language (DSL) to define pipelines.
The Jenkins ecosystem is made of a lot of plugins.
Support, documentation and compatibility of plugins can
be a challenge. In practice, these are not blocking points,
since most configuration is done once, and experience is
shared within the team. Additionally it was decided to
keep most of the CI jobs as simple shell command
invocations, which is very portable across CI systems in
case it is needed to migrate again in the future. This
reduces vendor lock-in, and facilitates running jobs
manually for testing or debugging.

The Jenkins master is deployed as an OpenShift pod,
whose configuration is completely described as code.
Deployment on OpenShift means no need to

Software Technology Evolution

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-MOPV041

deploy/maintain hardware. Configuration as code
mitigates the lack of durability of pods on OpenShift, as
well as making it easy to reuse (e.g. for another
project/team) and easy to bring back up in case of major
failure. The main challenge here was to find how to
serialize the configuration (Configuration as Code) of
Jenkins and its plugins, because the format and
commands to use are barely documented, requiring long
searches for help on the internet/stackoverflow [9], as
well as a lot of trial and error.

Beyond the basic Jenkins installation, the most
important plugin is the Gitlab Branch Source plugin [10]
that allows to simply point to a Gitlab folder from
Jenkins, and auto-configures the CI jobs for all
repositories, branches and merge requests in that Gitlab
folder.

Codeine: CLI helper

Codeine (a play on words between "code" and the
painkiller drug) is an idea to make development painless,
especially considering two types of software developers:

+ Framework and tooling providers
» Equipment developers

The distinction is often blurred depending if the focus
of the team is on software engineering or more direct
operational commitments. The goal with Codeine is to
make the former's life easier, while letting the latter
benefit from technical improvements with no/minimal
impact to their work. Considering the ageing makefile-
based build framework, the original idea behind Codeine
was to wrap and abstract the steps of software
development in the tool (create empty project, build, test,
release) to be able to evolve the wunderlying
implementation bricks with no impact on developer's
workflow and habits. Codeine is based on a file
describing the project, called product.xml’ which, in a
first approach, contains metadata about the project: name,
version, VCS repository, type (library or executable).

The first Codeine implementation re-used the custom
makefiles to perform operations on the project (e.g. build,
release). This approach helped consolidate the knowledge
about existing workflows: inputs, outputs, dependencies.
It also facilitated the migration of repositories from SVN
to Git, based on the metadata of the product.xml’. By
implementing Git repository support in Codeine, the risky
and complicated task of adding sub-par Git support to the
legacy makefiles was avoided. After working on
implementing the artifact release flow in Codeine, further
metadata was added to the ‘product.xml’ to structure the
released artifacts (e.g. does the artifact require extra files
beyond the binary to be delivered? symbolic links
defined?). Metadata identifying the dependencies of the
product were also added to product.xml!’ in anticipation of
better and/or automated dependency management. In
summary, this version of Codeine fully supported the
legacy makefiles framework, additional support for Git
repositories, and a structured release process.

MOPV041
245

©= Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

=g

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

A First Proof-of-Concept

Building on the Codeine base described above, a proof
of concept was launched to integrate modern tools into
the development workflow and validate the feasibility of
using Conan to manage dependencies and CMake as a
more modern build system.

From the outset Codeine was intended to support the
transition between the makefile-based build system to a
more modern one. It was anticipated that the existing
'product.xml’ content should be sufficient, or require only
minor adaptation, however it was soon discovered that
this was not the case. The first product.xml’ change
required was to include an element to tell Codeine which
build system it should use. This was considered a
necessary hole in the abstraction layer of Codeine.

Having decided on trying out Conan to manage
dependencies, the proof of concept used Conan through
Codeine to build most of the framework development
team's libraries. The first step was learning about Conan
usage, while the second milestone was letting Conan
know about Codeine's metadata, by using Conan's
mechanism to extend python conanfiles.

Since Conan is not a build system for C++, but rather
generates configuration for one, and CMake, among other
advantages, has good support from Conan, it was decided
to use CMake from Conan to build libraries. This makes
for a complex flow: Codeine calls Conan, which uses a
Codeine extension (python) to understand the
'product.xml’, and generate files for CMake, which in-turn
is used to build the library.

Although complex, this proof of concept already
brought several advantages:

» Strong dependency and toolchain management
thanks to Conan.

« Standard dependency declaration

» Standard artifact packaging, ready to be consumed
by a downstream project (using Conan).

+ Conan's remote features to upload/fetch packages
from an artifact repository, in turn enabling jobs
isolated from the legacy NFS repository to fetch
artifacts through HTTP.

However this proof of concept also showed that
abstracting over both a loose legacy system and a stricter
modern one is very hard. Several complications to
Codeine were implemented to support both systems, in an
imperfect way. Furthermore, the generated CMake files
were complex and did not provide the extensive IDE
support expected (e.g. QtCreator supports CMake based
projects, but was not able to parse the generated CMake
files satisfactorily)

Lessons learnt:

» A floating period transitioning back and forth
between the legacy and new system is to be avoided

» Good abstractions are hard, especially over vast and/
or vague domains such as "developer experience"

+ Retaining legacy comptibility takes a lot of effort,
with little reward

MOPV041
246

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-MOPV041

» Conan brings a lot of structure to a project with its
strict dependency management, however, this does
not fit nicely with the loose structure of the legacy
makefiles, which harmed the goal of Codeine being a
perfect abstraction over the build system.

* More abstraction layers make debugging harder
(why/where did a build fail: in Codeine? in CMake?
in Conan?)

Looking Forward: Second Proof-of-Concept

Given the experience of the Conan + Codeine + CMake
proof-of-concept, a next iteration is foreseen, with aims to
reduce complexity, and avoid the leaky abstraction
problem posed by Codeine's product.xml'.

Instead of Codeine being a complete wrapper over the
development workflow, it will be re-focused on the parts
missing from other tools: creation of new empty projects,
and managing the release process (e.g. ensuring code is
committed, pushed, that the code repository is tagged with
the release version, etc.). This reduced scope of Codeine
will allow to simplify the usage of tools like Conan and
CMake, making the most of them without being limited
by the incomplete abstraction that Codeine's product.xml’
tried to be. The advantage of using publicly available and
documented tools instead of Codeine-as-a-wrapper are:

* More flexibility to the developer.

 Less support for the providers of Codeine.

* More publicly available support for the tools (e.g.
Conan's and CMake's documentation, experts on
StackOverflow [9]).

CONCLUSION

Software engineering best practices evolve and improve
with time, as do automation and tooling to support
developers. Embracing such evolution in CERN's FEC
software development environment brings added value,
but given the variety of constraints,the modernisation is
both technically and organisationally challenging. Forced
migrations such as the Cl/Testbed are a good opportunity
for improvements. Modernisation is a continuous iterative
process, and while changes are disruptive and require
stakeholder buy-in, a flexible architecture allows for
iterative changes to be rolled-out progressively.

Beyond developer productivity and satisfaction, having
a modern development environment is also more
attractive to potential candidates, for whom experience
with industry standard tools is more valuable.

REFERENCES

[1] M. Arruat et al., “Front-end software architecture”, in Proc.
ICALEPCS’07, Knoxville, Tennessee, USA, Oct. 2007, pa-
per WOPAO4, pp. 310-312. https://jacow.org/icad7/
PAPERS/WOPA0O4 . PDF

A. Guerrero et al., “CERN front-end software architecture
for accelerator controls”, in Proc.ICALEPCS’03, Gyeongju,
Korea, Oct. 2003, paper WE612, pp. 342-344. https://
jacow.org/ica03/PAPERS/WE612.PDF

J. Lauener and W. Sliwinski, “How to design & implement a
modern communication middleware based on ZeroMQ”, in

(2]

(3]

Software Technology Evolution

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing

ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV041
Proc. ICALEPCS’17, Barcelona, Spain, Oct. 2017, pp. 45-51. [7] Bamboo, https://www.atlassian.com/software/
doi:10.18429/]ACoW-ICALEPCS2017-MOBPLOS bamboo

[4] GCC Dual ABI, https://gcc.gnu.org/onlinedocs/ [8] Attlassian Server end of support, https://www.
libstdc++/manual/using_dual_abi.html atlassian.com/migration/journey-to-cloud

[5] Conan Package Manager, https: //conan. io [9] Stack Overflow, https://stackoverflow.com/

[10] Gitlab Branch Source plugin, https://plugins. jenkins.

[6] CMake, https://cmake.org io/gitlab-branchsource

MOPV041
Software Technology Evolution 247 @

©=2d Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

