
UCAP: A FRAMEWORK FOR ACCELERATOR
CONTROLS DATA PROCESSING @ CERN
L. Cseppentő∗, M. Büttner, CERN, Geneva, Switzerland

Abstract
The Unified Controls Acquisition and Processing (UCAP)

framework provides a means to facilitate and streamline
data processing in the CERN Accelerator Control System.
UCAP’s generic structure is capable of tackling classic “Ac-
quisition - Transformation - Publishing/Presentation” use
cases, ranging from simple aggregations to complex machine
reports and pre-processing of software interlock conditions.

In addition to enabling end-users to develop data trans-
formations in Java or Python and maximising integration
with other controls sub-systems, UCAP puts an emphasis on
offering self-service capabilities for deployment, operation
and monitoring. This ensures that accelerator operators and
equipment experts can focus on developing domain-specific
transformation algorithms, without having to pay attention
to typical IT tasks, such as process management and system
monitoring.

UCAP is already used by Linac4, PSB and SPS operations
and will be used by most CERN accelerators, including LHC
by the end of 2021.

This contribution presents the UCAP framework and gives
an insight into how we have productively combined modern
agile development with conservative technical choices.

INTRODUCTION
The Unified Controls Acquisition and Processing (UCAP)

Framework is a recent product in the CERN Controls Soft-
ware & Services (CSS) group’s portfolio. This generic,
self-service online Controls data processing platform, en-
ables clients to easily implement and run Controls Device
data acquisition and processing in Java or Python.

The main objective of the project is to provide a common
approach to solve problems where:

1. data is acquired and grouped from several sources (Ac-
quisition),

2. based on these inputs, and optionally internal state, a
result is calculated (Transformation),

3. the result is made available to clients (Publishing/Pre-
sentation).

Such “Acquisition - Transformation - Publishing/Presen-
tation” problems are regularly featured in many Controls
products, such as data concentrators, software interlocks,
logging adaptations and autopilot-style Controls software.

At CERN, Controls software development responsibilities
are often split between the CSS group (mainly computing
engineers providing frameworks and generic services), and
∗ lajos.cseppento@cern.ch

equipment and operations groups (typically experts in their
specialised domains). Experience showed that in order to
effectively tackle certain problems, collaboration of teams
with different backgrounds is essential, as the expertise of
Controls framework libraries and accelerator domain knowl-
edge are distributed. The UCAP service aims to streamline
development and maintenance by splitting responsibilities:

• the UCAP team provides infrastructure, tools, training
and support for development, testing and deployment
of transformations,

• while the transformation code and configuration stays
under the responsibility of the end-user (typically a
domain expert).

This self-service model enables end-users to focus on re-
alising their business logic, while the service takes care of
secondary tasks, such as process management and monitor-
ing. It is also scalable: as service usage increases, only new
machines and UCAP nodes need to be added to the system.

Nevertheless, this set up brings other challenges, such as
isolating user groups on shared hardware, ensuring dynamic
server-side code loading, providing substantial documenta-
tion and user-friendly access. At this scale, a high level of
automation is essential

The “UCAP-idea” originates from 2016, with a first pro-
totype started in 2018. During this phase, the first use case
was satisfied, providing transformations on approximately
1000 data streams. The following year, in the beginning of
Long Shutdown 2, development started on the operational
product – in close collaboration with stakeholders. A few
months later, still in early 2019, the system went to produc-
tion while iterative development continued. As of 2021 Q3,
the UCAP service is composed of 105 nodes (isolated de-
ployment units), running on 6 physical servers, performing
around 20 000 data transformations.

UCAP IN A NUTSHELL
The UCAP service is a multitenant system. Nodes are

assigned to client groups or use cases for isolation purposes.
All nodes are fully functional data processing services, dif-
fering only in basic configuration parameters, such as name,
description and responsible. The layered architecture, pre-
sented in Fig. 1, mirrors the “Acquisition - Transformation -
Publishing/Presentation” chain – each layer being responsi-
ble for dealing with one aspect of data processing. UCAP
complies with this model on the architecture level, avoiding
the introduction of any new structural elements in the data
representation.

The CERN Control System uses the Device-Property
model [1], meaning that all endpoints providing data are

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV039

MOPV039C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

230 Software Technology Evolution

Figure 1: UCAP Node Architecture.

expressed in a DEVICE_NAME/PropertyName format, to
which data is published as a map of key-value pairs.

Acquisition Layer
This layer is responsible for acquiring inputs from data

sources. This is carried out using JAPC1 [2], a CERN stan-
dard library for reading inputs from individual Controls De-
vices. As JAPC is an abstraction layer over communication
protocols, a wide range of inputs are supported, including
UCAP itself (i.e., chaining of transformations).

In many cases, it is required to group inputs from sev-
eral Controls Devices, for which UCAP Event Builders are
provided. These data acquisition algorithms are the driving
force for transformations. At the time of writing, 10 event
builder implementations are provided, ready to be selected
and configured by end-users.

A basic example of an event builder definition is shown
in Listing 1, expressed in JSON format.

Listing 1: Basic Event Builder Definition
{

” t ype ” :
” GroupTr iggeredCyc leS tampGrouped ” ,

” t r i g g e r G r o u p ” : {
” s u b s c r i p t i o n s ” : [

{ ” p a r a me t e r ” : ”MAGNET_1/ Acq” } ,
{ ” p a r a me t e r ” : ”MAGNET_2/ Acq” }

] ,
” t imeoutMs ” : 1000

}
}

This code snippet instructs UCAP to instantiate an event
builder, grouping data from two sources based on their time
stamps. The type field identifies the name of the acquisition
logic, which also decides the rest of the configuration layout.
1 Java API for Parameter Controls

In this case the triggerGroup declares how event creation
shall be handled: the subscriptions list contains the name
of the inputs and the timeoutMs field specifies how long
to wait for them – this is notably useful when one of the
sources is not available, since processing can move with the
inputs that were available when the timeout was reached.

Community feedback highlighted how powerful event
builders are. End-users can express acquisition logic in a
declarative manner, instead of they themselves having to
create subscription handles, to start monitoring threads and
to implement combination logic.

Each event created contains the data received from all
sources and it is passed to the Transformation Layer for
processing.

Transformation Layer
The Transformation Layer is responsible for carrying out

the actual data processing. Transformations are instances
of converter algorithms, which are configurable and can be
implemented in Java or Python (Python with C/C++ bind-
ings is also supported and used by the community). UCAP
currently provides and maintains 20+ so called standard con-
verters, which implement commonly required algorithms in
a generic manner. Examples include merging homogeneous
data from several sources; splitting multiplexed data prior
to long-term logging. This enables a part of our user com-
munity to benefit from UCAP without having to write any
code.

In addition, custom converters are also supported. For
each event created, a transformation may create one or more
results or choose to skip the input. Plus, if there is a need for
a stateful transformation, the internal state of the transforma-
tion is preserved between events. Apart from these aspects,
it is up to the end-user’s creativity how they implement their
business logic. An example of a Python converter structure
can be seen in Listing 2: this particular code re-publishes
the sum of two incoming values.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV039

Software Technology Evolution

MOPV039

231

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Listing 2: Example Python Converter Structure
def c o n v e r t (e v en t) :

l og = l o g g i n g . ge tLogge r (__name__)

r e s u l t = Acqu i r edPa r ame t e rVa lue (
pub l i s hed_pa r ame t e r_name ,
e v en t . t r i g g e r _ v a l u e . h e ade r

)

v1 = even t . g e t _ p l a i n _ v a l u e (’BLM1’)
v2 = even t . g e t _ p l a i n _ v a l u e (’BLM2’)

r e s u l t . u p d a t e _ v a l u e (
” r e s u l t ” ,
v1 + v2

)

l og . i n f o (” I n p u t ␣ : ␣%s ” , e v en t)
l og . i n f o (” Outpu t : ␣%s ” , r e s u l t)

re turn F a i l S a f e P a r a m e t e r V a l u e (
r e s u l t

)

For converter development we recommend using our in-
house standards, CBNG [3] for Java and Acc-Py [4] for
Python, however, it is also possible without those.

Publishing Layer
In order to make the transformation results visible to

consumers, UCAP nodes encapsulate an RDA32 Device
Server [5] [6] (the same communication protocol used by
FESA3 [7]). The user interface of the Publishing Layer is
a simple return statement. Internally, the UCAP RDA3
Virtual Device Server takes care of managing client sub-
scriptions. The results can be consumed with C++, Java and
Python clients. Results can also be directly logged in the
NXCALS4 [8] time-series data logging system.

Other Notable Features
Apart from “doing the job”, UCAP provides several other

Controls features, notably:

• FESA-style alarms, which can be integrated e. g., with
LASER5 [9],

• access to previously logged data from NXCALS,

• transparent rolling updates of user code without data
loss,

• language-agnostic, RBAC6-protected [10] REST API
for inspection and management and

2 Remote Device Access
3 Front-End Software Architecture
4 Next CERN’s Accelerator Logging Service
5 LHC Alarm SERvice
6 Role-Based Access Control

• development, testing, monitoring and troubleshooting
utilities.

USER EXPERIENCE
User experience is crucial to ensure customer productivity

and satisfaction. Good user experience also reduces the
support load of the service provider team.

To facilitate development, all Java public API are anno-
tated with javadoc and all UCAP Python public API are
decorated with docstrings and MyPy type hints. Sample def-
initions and converter code are provided in both languages.
UCAP includes testing utilities to aid users in writing unit
test for converters, inspecting event builders or even running
UCAP nodes locally either, directly from Java or using the
UCAP Docker image.

When a user wants to start using UCAP, the UCAP team
prepares and assigns two nodes for the use case:

• a PRO node for operational purposes,

• a TEST node for verification prior to deployment of
transformations in operation.

A rich command line tool, UCAP-CLI (see Fig. 2), is pro-
vided to facilitate node management and introspection. It
has an extensive TAB-based auto-completion feature, which
aids users with displaying commands, Device, transforma-
tion and package names on pressing the TAB key. The CLI
is also used extensively by the UCAP team for maintenance
and support purposes. UCAP-CLI is available on all de-
veloper and control room machines, and it can connect to
PRO, TEST and local UCAP nodes. The development and
maintenance costs of this tool are also low compared to a
fully featured GUI.

Out-of-the-box, service monitoring is provided to end-
users in the form of Grafana dashboards [11] (example in
Fig. 3). These dashboards are automatically created for each
node and Device added to the UCAP service, and include
subscription (data input) status, conversion errors and in-
put/output rates. These dashboards are quite convenient as
in case of failures (e. g., control room display is blank) they
make fault isolation quick (e .g., inputs are down).

TRAINING AND SUPPORT
Training for end-users is an essential element of the UCAP

service. In the early stages of the service, focus was given to
close stakeholder collaboration, frequent pair-programming
sessions and an emphasis on written documentation. As the
user base expanded, effort was put into public presentations
(training lectures and product demos) which were recorded
and made available online. Since publishing such materials,
a correlation with a drop in the number of support requests
from new users has been observed.

Communication channels comprise a traditional e-mail
list and a Mattermost Channel for instant messaging. Mat-
termost has shown to be efficient in tackling quick questions.
These channels are completed with periodic UCAP Techni-
cal Meetings which include demos and hands-on training.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV039

MOPV039C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

232 Software Technology Evolution

Figure 2: UCAP-CLI, the rich command-line tool.

DEVELOPMENT METHODOLOGY
An agile workflow was used to balance development and

maintenance of UCAP with other ongoing projects. This
comprised weekly planning meetings, daily stand-ups, fre-
quent pair-programming, and code reviews using iterative
development practices. A JIRA Scrum Board was helpful
to keep focus and GitFlow practices to keep a high velocity.
With limited resources and challenging deadlines, runtime
verification favoured integration and system tests over unit
tests, as experience showed that they were more efficient for
discovering bugs and regressions during development.

TECHNOLOGICAL CHOICES
In 2018 the UCAP prototype was implemented with re-

cent technologies (Java, Spring Boot, OpenFeign, Project
Reactor and protobuf/gRPC). Several FaaS7 solutions with
7 Function-as-a-Service

Kubernetes were evaluated, however, at the end of 2018,
Kubernetes-based solutions were considered as too risky
to deliver within the strict deadlines, due to the significant
involvement and long-term commitment required from mul-
tiple teams.

In early 2019, technological choices were finalised: Java,
Spring Boot, OpenFeign, REST, JAPC and Controls Middle-
ware (CMW). This eliminated partial duplication of commu-
nication features realised by gRPC in the prototype. Clas-
sic Java executor pools were favoured over reactive pro-
gramming practices. The Open Services Gateway initiative
(OSGi) framework [12] is used to support dynamic code
loading (e.g., when users want to replace the transformation
code on a running node). This resulted in simple and clear
server-side code, while the OSGi layer is hidden from the
user via a Gradle Plugin [13]. For UCAP-CLI we used the
JLine library [14]. Java-Python communication is carried
out over TCP and regarded as an internal protocol.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV039

Software Technology Evolution

MOPV039

233

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Figure 3: Grafana Dashboard of an Operational Device.

For code collaboration we leveraged GitLab. Highly au-
tomated testing is executed by a CI/CD pipeline on unit,
integration and system test levels. Overall monitoring is
based on the well-integrated Prometheus/Alertmanager/-
Grafana [15] [11] stack, with JMX used for some expert
interventions. Node maintenance is carried out based on
UCAP-specific YAML files, while UCAP tooling takes care
of tackling deployment and process management. This has
proven to be a cost-effective solution.

The documentation is based on Mkdocs Material [16],
adhering to the CERN design guide, encapsulating both
Java and Python API documentations. As the last step of
the development tasks and one of the least rewarding engi-
neering tasks, focus was given to making documentation
easy to write: the documentation source is hosted with the
UCAP source code, thus documentation can be reviewed in
the same Git merge request.

FUTURE WORK
In the first half of 2021, an extensive review of UCAP

was conducted in order to reflect on the development and
user experience gained so far and identify the next objec-
tives. A tighter integration with the Controls Configuration

Service [17] and support for real-time processing were im-
portant aspects identified from the review. From a UCAP ser-
vice provider perspective, redundant middleware and avail-
ability of a computing cluster are key aspects that could lead
to an even better UCAP service.

CONCLUSION
Used in Linac4 [18], PSB, PS, SPS and LHC – UCAP has

been rapidly adopted across the CERN accelerator complex.
The user community continues to grow, which is a clear
indication of the success of the product. The high-quality
standards followed during development have contributed to
scarce bug reports and no service outage thus far. At the
same time, UCAP has facilitated the removal of a significant
number of custom and complex standalone systems, thus ful-
filling the objective of providing a truly “Unified” Controls
Acquisition and Processing platform.

ACKNOWLEDGEMENTS
The authors would like to express special acknowledge-

ments to early adopters of the service. Their feedback con-
tributed a lot to the product.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV039

MOPV039C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

234 Software Technology Evolution

REFERENCES
[1] V. Baggiolini, S. Jensen, K. Kostro, F. DiMaio, A. Risso,

and N. Trofimov, “Remote Device Access in the New CERN
Accelerator Controls Middleware”, in Proc. 8th Int. Conf.
on Accelerator and Large Experimental Physics Control Sys-
tems (ICALEPCS’01), San Jose, CA, USA, Nov. 2001, paper
THAP003, pp. 496–498.

[2] V. Baggiolini, Lionel Mestre, “JAPC - the Java API for
Parameter Control”, in Proc. 10th Int. Conf. on Accel-
erator and Large Experimental Physics Control Systems
(ICALEPCS’05), Geneva, Switzerland, Oct. 2005, oral
TH.1.5-8O

[3] L. Cseppentő, V. Baggiolini, E. Fejes, Zs. Kővari, and N.
Stapley, “CBNG - The New Build Tool Used to Build Millions
of Lines of Java Code at CERN”, in Proc. 16th Int. Conf. on
Accelerator and Large Experimental Physics Control Systems
(ICALEPCS’17), Barcelona, Spain, Oct. 2017, pp. 789–793.
doi:10.18429/JACoW-ICALEPCS2017-TUPHA163

[4] P.Elson, I. Sinkarenko and C. Baldi, “Introducing Python as a
Supported Language for Accelerator Controls at CERN”, pre-
sented at the 18th Int. Conf. on Accelerator and Large Exper-
imental Physics Control Systems (ICALEPCS’21), Shanghai,
China, Oct. 2021, paper MOPV040, this conference.

[5] W. Sliwinski, K. Kaczkowski, and W. Zadlo, “Fault Tolerant,
Scalable Middleware Services Based on Spring Boot, REST,
H2 and Infinispan”, presented at the 17th Int. Conf. on Ac-
celerator and Large Experimental Physics Control Systems
(ICALEPCS’19), New York, NY, USA, Oct. 2019, paper
MOBPP03.

[6] J. Lauener and W. Sliwinski, “How to Design & Imple-
ment a Modern Communication Middleware Based on Ze-
roMQ”, in Proc. 16th Int. Conf. on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS’17),
Barcelona, Spain, Oct. 2017, pp. 45–51. doi:10.18429/
JACoW-ICALEPCS2017-MOBPL05

[7] A. Schwinn et al., “FESA3 – The New Front-End Software
Framework at CERN and the FAIR Facility”, in Proc. 8th Int.
Workshop on Personal Computers and Particle Accelerator

Controls (PCaPAC’10), Saskatoon, Canada, Oct. 2010, paper
WECOAA03, pp. 22–26.

[8] J. P. Wozniak and C. Roderick, “NXCALS - Architecture and
Challenges of the Next CERN Accelerator Logging Service”,
presented at the 17th Int. Conf. on Accelerator and Large Ex-
perimental Physics Control Systems (ICALEPCS’19), New
York, NY, USA, Oct. 2019, paper WEPHA163.

[9] Z. Zaharieva and M. Büttner, “CERN Alarms Data Manage-
ment: State & Improvements”, in Proc. 13th Int. Conf. on
Accelerator and Large Experimental Physics Control Sys-
tems (ICALEPCS’11), Grenoble, France, Oct. 2011, paper
MOPKN011, pp. 110–113.

[10] P. Gajewski, S. R. Gysin, and K. Kostro, “Role-Based Au-
thorization in Equipment Access at CERN”, in Proc. 11th
Int. Conf. on Accelerator and Large Experimental Physics
Control Systems (ICALEPCS’07), Oak Ridge, TN, USA, Oct.
2007, paper WPPB08, pp. 415–417.

[11] Grafana,
https://grafana.com

[12] OSGi https://www.osgi.org/

[13] Gradle Build Tool https://gradle.org/

[14] JLine https://github.com/jline/jline3

[15] Prometheus https://prometheus.io/

[16] Material for MkDocs https://squidfunk.github.io

[17] L. Burdzanowski and C. Roderick, “The Renovation of
the CERN Controls Configuration Service”, in Proc.
15th Int. Conf. on Accelerator and Large Experimen-
tal Physics Control Systems (ICALEPCS’15), Melbourne,
Australia, Oct. 2015, pp. 103–106. doi:10.18429/
JACoW-ICALEPCS2015-MOPGF006

[18] M. Hrabia, M. Peryt and R. Scrivens, “The Linac4
Source Autopilot”, presented at the 18th Int. Conf. on
Accelerator and Large Experimental Physics Control Sys-
tems (ICALEPCS’21), Shanghai, China, Oct. 2021, paper
WEPV018, this conference.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV039

Software Technology Evolution

MOPV039

235

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

