18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-MOPV036

PORTING CONTROL SYSTEM SOFTWARE FROM PYTHON 2 TO 3 -
CHALLENGES AND LESSONS

A. F. Joubert, M.T. Ockards, S. Wai, SARAQO, Cape Town, South Africa

Abstract

Obsolescence is one of the challenges facing all long-
term projects. It not only affects hardware platforms, but
also software. Python 2.x reached official End Of Life status
on 1 January 2020. In this paper we review our efforts to
port to the replacement, Python 3.x. While the two versions
are very similar, there are important differences which can
lead to incompatibility issues or undesirable changes in be-
haviour. We discuss our motivation and strategy for porting
our code base of approximately 200k source lines of code
over 20 Python packages. This includes aspects such as
internal and external dependencies, legacy and proprietary
software that cannot be easily ported, testing and verifica-
tion, and why we selected a phased approach rather than
“big bang”. We also report on the challenges and lessons
learnt - notably why good test coverage is so important for
software maintenance. Our application is the 64-antenna
MeerKAT radio telescope in South Africa — a precursor to
the Square Kilometre Array.

INTRODUCTION

The MeerKAT radio telescope [1] is operational in the
Karoo region of South Africa, with its 64 dish antennas. It is
a precursor to the larger Square Kilometre Array project [2],
and will be integrated into the mid-frequency array, SKA1
MID.

The focus of this work is to report back on our approach,
and progress related to the effort of porting our codebase
from Python 2 to Python 3 [3]. The telescope has many
subsystems with their own teams and software codebases —
here we look at the control and monitoring software system.

This paper is organised as follows. First, we briefly com-
pare Python 2 and Python 3. We then discuss the motivation
for change and strategies considered. The actual approach
taken, and the results are then presented, before concluding.

PYTHON 2 VS. 3

The main driver leading to the creation of Python 3 was
to clean up problems with the language [4]. These changes
were backwards incompatible by design. The most funda-
mental change is the representation of strings using Unicode
by default, rather than 8-bit ASCII. This resulted in a clear
split between binary data and text data.

There are a number of other changes [5], including:
print became a function, module imports are now absolute,
rearrangement/renaming of the standard libraries, more use
of generators instead of concrete containers, division auto-
matically promotes to floating point, classical classes are
removed, and first-class support for asynchronous coroutines
with async and await.

Software Technology Evolution

MOTIVATION FOR CHANGE

Porting a codebase requires significant effort, and any
changes introduces risks like bugs, downtime, and degraded
performance. The benefits of porting need to outweigh these
negative factors.

Positive factors:

 Python 2 is end-of-life since January 2020. This means
no further changes or fixes to the interpreter will be
provided.

The ecosystem of Python packages are dropping Python
2 support. This also means no fixes, no security updates,
an inability to benefit from future improvements in
existing packages, and new packages. Another problem
is that dependencies with unpinned requirements start
to break, when a new version of a package adds Python
3-only features incorrectly.

Linux distributions are no longer including packages for
Python 2 [6]. While there are ways of installing Python
2 now, this is likely to get more and more difficult.
A lack of Python 2 support on future Linux releases,
means that we cannot upgrade our servers, and are
“stuck” on old operating systems.

In our opinion, software engineers tend to favour newer
tools, and Python 2 is now considered “legacy”. There
are new features in Python 3 that improve the devel-
opment experience. Software engineers that enjoy the
work they do are more motivated and committed to
their projects.

The remaining lifespan of MeerKAT, before it is con-
sumed by SKA, is at least 5 years, so we need to be
able to continue improving the software for at least that
long.

Revisiting the whole codebase while porting helps to
increase the knowledge and understanding of the code-
base, and can result in old bugs being discovered and
fixed.

Negative factors:

* A huge amount of work is required, so other software
features/improvements have be delayed in order to allo-
cate human resources to the porting project.

 Risk of introducing bugs which lead to incorrect oper-
ation, downtime or degraded performance.

Overall, we believed that the positive aspects make the

exercise worth doing.

L]

STRATEGIES FOR PORTING

The Python porting book [7] outlines a few strategies for

porting to Python 3.
Unfortunately, most of the projects in our codebase are
libraries and therefore coupled during runtime (they must run
MOPV036

217

©= Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

in the same Python environment with shared site-packages).
j This precludes us from any “big bang” approaches moving
directly to python3, so our upgrade path will have to be
staggered, by porting one package at a time.

The remaining approaches will be discussed below, end-
ing with our selection.

= Separate Branches for Python 2 and Python 3

Maintaining two different branches and distributing two
X separate versions of the code. This is where the most ef-
fort and complexity involved. This would entail patches
(pull requests) to the python2 codebase and a simultaneous
patch/PR to the python3 with equivalent changes. In addi-
tion, the python2 codebase also has to be ported to python3
initially.

This is the most complex and expensive option.

Single Source (Python2), Two Distributions
(Python2 and Python3)

Keep the source in python2 and use python-modernize [8]
to automatically convert the source to python3 compati-
ble distribution packages. The python-modernize package
wraps a tool called 2to3 [9]. There will be some upfront
effort required to write “fixers” for code that cannot be auto-
atically converted and some scripts to ensure conversion
happens for every new change. Eventually, the handwritten
codebase will have to be replaced by the generated python3
code.

=

Where’s the complexity? Verifying correctness of au-
tomated conversion and writing fixers or manually editing
generated python3 code for edge cases. Some learning curve
around 2to3 and distutils.

What’s the benefit? Since this is an additive change, the
current way of developing can remain the same on python2.
This allows the team to ease into python3.

Risks The python3 code remains a second class citizen
and becomes maintained/de-prioritised. Code that is never
run eventually becomes dead code.

Single Source, Single Distribution (Python2 and
Python3 Wrapper)

Using a wrapper layer and maintaining a codebase that
is compatible in both python2 and python3. This entails
leveraging linting and type-checking tools to ensure new
changes are compatible with both and sometimes writing
code that delegates to a wrapper/compatibility layer such
as six [10]. We’d still want to use python-modernize or
python-future [11] to do the initial conversion of the code to
a compatible state.

Where’s the complexity? The compatibility layer
might create a “type explosion” - e.g., python-future in-
cludes additional string and byte types. The toolchain would

OPV036

=

©=2d Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the Work, publisher, and DOI

[\®]
—
o]

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-MOPV036

have to be very strict and robust to detect and prevent any in-
compatible changes (linting, type-checking by pylint, mypy,
pytype, etc.). The initial conversion might be trickier and
more complex than simply writing python3 code.

What’s the benefit? A single codebase, albeit written
in a strict style with a intersection set of python2 and python3
features.

Risks Some additional complexity in write-time and
potentially ugly wrappers. A possibility that the Python
2-compatible code lives on forever.

Single Source (Python3), Two Distributions

(Python2)

Maintain the source in Python3 and convert to be Python2
compatible via automation. There will be upfront effort to
convert the projects to strictly Python3 but (it also means a
clean break into python3 when the time comes).

Where’s the complexity? We’d have to convert (and
verify) an entire project upfront to python3. 3to2 conversion
fixers would have to be written and maintained, however
it’s most likely easier to introduce python2 compatibility to
python3 code than vice-versa and conversion is throw-away
effort.

What’s the benefit? Once a package is upgraded to
python3, we can simply turn off the build to python2 when
the time comes. It’s also most likely easier to introduce
python2 compatibility to python3 code than vice-versa.

Risks
be huge.

Upfront effort to convert some packages might

Strategy Selection

The two-branch strategy was considered too time consum-
ing to pursue - all patches (pull requests) would have to be
duplicated for each branch. That left 3 strategies, with the
big difference between being whether or not to autogenerate
production code. We decided against autogeneration, as this
would result in two codebases (original, and autogenerated)
that need to be verified by humans. Our code coverage from
unit tests was not considered sufficient as the sole method
of verification for the autogenerated code.

Thus the porting strategy selected was Single source, sin-
gle distribution (python2 and python3 wrapper). For the
wrapper library, we chose python-future instead of six. They
are quite similar, so there was not a strong deciding factor
here.

APPROACH

The details of the approach followed are described in this
section. We look at the package dependencies, the size of the
codebase (lines), and finally discuss the workflow adopted.

Software Technology Evolution

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

Dependencies

There are several Python tools that can be used to de-
termine a dependency graph for packages, including: py-
deps [12], snakefood [13], and pipdeptree [14]

pipdeptree was chosen because it leverages pip [15] to
determine dependencies on a package level, rather than file
level (unlike snakefood which operates on file level). It
also supports a —~reverse flag (unlike pydeps) which shows
which downstream packages require a given dependency, i.e.
why that particular package is installed. This means we can
limit our analysis to our own codebase’s packages.

The goal was to rank packages based on their place in
the tree. Packages that are dependencies for many others
downstream are more risky whereas packages that are leaf
nodes are less risky. However, our porting needs to start
at the root of the dependencies (i.e., most used package).
If we try to port a package with a dependency that only
supports python2, we will not be able to test that package
under python3, so we will have no confidence in the port.

Leaf nodes are typically where our application scripts are
found. They make use of various libraries higher in the de-
pendency tree to build the required functionality. Only when
a leaf node has been ported can we start running some of
the applications that make up our distributed control system
under Python 3.

Unfortunately, the default pipdeptree output is in the form
of text. There is a flag to output graphviz [16] . dot files but
it does not support the —only flag to filter out packages we
are interested in.

Some modifications are required to pipdeptree to make
it work for our purposes. So pipdeptree was patched [17]
accordingly. The resultant dependency graph is shown in
Fig. 1. Our approach was to work from top to bottom, to
ensure that we have python3-compatible versions of all de-
pendencies.

Lines of Code

As part of estimating the complexity of the work, we
analysed code metrics, including the number of lines of
code. This was done using a Radon [18]. The metric of
interest was the number of source line of code (SLOC).

The total for all packages was 214 k SLOC, with the small-
est package around 0.15 k SLOC, and the largest around 41 k
SLOC. The average size was 9.7 k.

We intended to use these numbers to help with estimating
the time to port each package. However, we found such a
high variance (400%) in the time to port the first few pack-
ages that we thought it not useful. However, as we show in
the results section, the metric can be of merit.

Stdlib and Third-Party Dependencies

Besides the dependencies within our own codebase, we
also need to determine whether our packages have stdlib
or external/third-party dependencies that would prevent us
from upgrading.

We leveraged the caniusepython3 [19] tool to check.

Software Technology Evolution

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-MOPV036

To do so, we needed requirements. txt files for each
project. This was done by installing each project in
its own respective virtualenv then running ‘pip freeze°.
These requirements.txt files were then passed to ca-
niusepython3.

This helped us discover a number of third-party packages
that we would need to find replacements for.

Workflow

Starting point Initially, we ported the simplest package,
with the least dependencies. This allowed for some learning,
which we could apply to subsequent packages.

Procedure We created a wiki page with details of the
procedure to follow. This was improved over time, and
is summarised below. An important detail is that a pull
request must be created and merged to the main branch after
each step. This helps to ease the burden on the reviewers —
smaller changesets are easier to review, and result in better
quality reviews.

1. Evaluate the repository. This provides context for the
developer — they may have minimal experience with
the repository.

2. Clean up. Delete unused code and scripts to simplify
the porting effort.

3. Update Continuous Integration (CI) to run python3
tests (allow failure).

4. Futurize module (maintain python2 support):

(a) Futurize stage 1 (modernize python2 code only,
no compatibility with python3)

(b) Auto code format (using black [20]). Since we
are touching the whole codebase, now is a good
time to make these kind of large scale changes
(code was not previously auto-formatted).

(c) Futurize stage 2. This uses the python-future
wrapper to provide python3 support. We decided
to avoid unicode_literals due to the draw-
backs [21], and the future.newstr, as it leads
to type confusion — lines like this were removed:
from builtins import str.

5. Futurize module (add python3 support). Get tests
passing under python3. This includes updating de-
pendencies, dealing with strings, and other python2-
python3 differences. This is also the time to up-
date the classifiers and python_requires in the
setup.py file.

6. Update CI to fail if python3 tests fail, and to publish
the python3 package.

7. Verify that downstream packages still pass their
python2 unit tests. This ensures no regressions in the
python2 version of the ported code.

MOPV036
219

©= Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©=22 Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISSN: 2226-0358

ISBN: 978-3-95450-221-9

katportal

N—_—

—
\
S

4

as
AN

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-MOPV036

Katversion

|

Katdeploy

=<

pylibmodbus-mkat

Figure 1: Python package dependency graph. Light and dark green packages are used at run-time, with dark green indicating
the leaf nodes. Yellow packages are not used at run-time. White dotted packages are deprecated, and can be ignored.

8. Verify that the full integration tests for the whole code-
base are still passing. Again, this is largely running
under python2, until we get to the leaf nodes, but in-
creases our confidence in the port.

Finally, once all the packages support python3, we would
start dropping python2 support completely. This would en-
able python3 features like async and await to be used. It
would also be possible to drop the python-future compatibil-
ity layer.

Human resources We follow an Scrum approach, with
work divided into sprints. Initially, we added stories for
porting packages into each sprint. This was a failure for a
few reasons:

* It proved impossible to estimate the time to migrate a
package. Stories we expected to fit in a sprint, would
run to multiple sprints. Even as we re-estimated them
each sprint.

* The assumption of ““all developers are equally skilled”
made by Scrum, meant that different people would work
on porting in subsequent sprints. This meant a lot of the
knowledge gained in previous sprints had to be learned
afresh, by the new developers that had not done this
kind of work before. It was very inefficient.

Due to these failures, we decided on an alternative ap-
proach: dedicate a single experienced software engineer to
the task, with reviews from the technical lead. This work was
handled outside of the Scrum process, negating the need for
the problematic estimation. A downside was that we were
not even able to speculate a completion date. The benefit
being that one person would become an expert at the port-
ing techniques and typical problems, allowing for a quicker
completion.

The single developer approach has shown some dividends.
In practice, the main problem was prioritisation. There were
often support issues needing urgent attention that arose in
the areas where he/she is most experienced. This removed
the focus from the porting work, which while very important,
could never have a priority as urgent as keeping production
operational.

A slightly more minor problem is the bottleneck intro-
duced by having a single reviewer to sign off on the changes.

MOPV036

[\%]
%3
=

As the approach guidelines require pull requests to be merged
after each step, this can lead to short delays. In practice, we
worked around this by starting the next part of work from an
unmerged branch. Then if any rework was required on the
open pull request, that would be applied to the new branch
(e.g., via git rebasing).

In the last 4 months, we have moved a second resource to
this work to try and further speed things up.

We do not track the hours that each developer works on
any given task, so there is no estimate of the total hours
consumed by this effort.

RESULTS

Test Coverage and Rework

If we measure progress as “packages done”, then one of
the issues that effectively delayed us, was rework. After
porting package A, testing it and the downstream packages
dependent on it, we would declare the package as “done”.
However, when we started porting package B, which de-
pended on package A, we would find a defect that needed
to be fixed in package A again. This was generally because
that part of package A was not properly covered by test cases.
When we started exercising it under python3 in a different
way, problems emerged.

This is a reason why good test coverage is very bene-
ficial when undertaking a task such as porting. It can be
seen as a type of refactoring - the functionality must remain
unchanged, while some improvement is made to the code.

Another area where test coverage is especially important
at the leaf nodes in the dependency graph. Here there are no
further downstream packages to provide additional testing
feedback. If the test coverage is low, then we have little
confidence in the port, and must resort to manual testing
(exercising the applications by hand). This is a risky strategy.

Metrics

For each package we used our version control system
history to extract the dates of the first and last commit related
to the porting work. This excludes the rework mentioned in
the previous section. Using the time elapsed between the
first and last commits and the SLOC, we can derive useful
metrics.

Software Technology Evolution

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

The rate (SLOC per week) to port a package as function
of the package size (in SLOC) is shown in Fig. 2. We see
no significant correlation. The time axis is not shown, but
there was a factor of 4 difference in the rate for the first few
packages (0.29 to 1.19 kSLOC code per week).

Package size vs. Rate to port

w o

(SR
a o
.

kSLOC per week

.
L
.
.

)

0.0 4.0 8.0
kSLOC

12.0 16.0

Figure 2: Package size versus rate of porting for all packages
completed.

Considering the total SLOC in the codebase, minus the
SLOC completed over time we can get a “burndown” chart,
as in Fig. 3. There have been significant variations in the rate
of work, but overall the trend is linear. Unfortunately, after
almost 3 years of part-time work, we are only half way. Ex-
trapolating this line, we predict an end date around January
2025. We need to decide if progressing with this porting
project is worthwhile, as there will only be a one or two years
of MeerKAT’s operational life remaining. Alternatively, we
need to find a much more rapid way of progressing.

Porting progress: burndown chart

to be ported

LR =0.9734

Q
Q
|
7]
2

0

2019/02/04 2020/06, 2023/03/15 2024/07/27

18 2021

10/31

—e—KSLOC remaining

------- Linear (kSLOC remaining)

Figure 3: Lines of code remaining to be ported versus time.
With completion date projected using a straight line regres-
sion.

CONCLUSION

We have discussed our motivation and the various strate-
gies available for porting our codebase from Python 2 to
Python 3. We showed how the dependency graph drove the
approach, and provided a detailed procedure. The various
missteps and challenges associated with human resources
and project prioritisation were described.

The results section indicate the disappointing progress we
have made thus far. We will need to re-evaluate the porting
project to see how we can change our approach. If we had

Software Technology Evolution

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-MOPV036

done such close analysis of the data a year or more ago we
may have adjusted sooner.

We have not yet worked on legacy and proprietary pack-
ages that may be difficult or impossible to port, as these are
in an unreached leaf node. Nevertheless, our plan is sepa-
rate out the parts that are too hard to port, and run them in
containers that still have the old dependencies.

The porting of a codebase is a significant undertaking, and
needs to be carefully managed. Prioritisation and dedicated
resources are important, but success is not guaranteed.

REFERENCES

About MeerKAT - SARAO, https://www.sarao.ac.za/
science/meerkat/about-meerkat/

(1]

(2]
(3]

Square Kilometre Array, https://skatelescope.org
Python Programming Language, https://www.python.
org

Python 3 Q & A, https://ncoghlan-devs-python-
notes.readthedocs.io/en/latest/python3/
questions_and_answers.html

(4]

[5] Cheat Sheet: Writing Python 2-3 compatible code, http:

//python-future.org/compatible_idioms.pdf

Python — Debian Wiki,
Python

[6] https://wiki.debian.org/

[7] Supporting Python 3: An in-depth guide,

//python3porting.com/strategies.html

https:

[8] Python-Modernize, https://python-modernize.

readthedocs.io/en/latest/index.html

[9] 2to3 - Automated Python 2 to 3 code translation, https://

docs.python.org/3/library/2to3.html

[10] Six: Python 2 and 3 Compatibility Library, https://six.

readthedocs.io
[11]
[12]
[13]

Python-Future, https://python- future.org
pydeps, https://github.com/thebjorn/pydeps

snakefood,
https://github.com/GreatFruitOmsk/snakefood

[14] pipdeptree,

https://github.com/naiquevin/pipdeptree

[15] pip - The Python Package Installer, https://github.com/

pypa/pip

[16] Graphviz, https://graphviz.org

[17] pipdeptree patched, https://gist.github.com/sw00/

b3a3a4660ef5ff7dcb28a59326£f1e9bd

[18] Radon, https://radon.readthedocs.io/en/latest/

[19] caniusepython3,

caniusepython3

https://github.com/brettcannon/

[20] Black: The Uncompromising Code Formatter, https://

github.com/psf/black

“Should I import unicode_literals?”,
https://python-future.org/unicode_literals.
html

[21]

MOPV036
221

©= Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©

