
THE EVOLUTION OF THE DOOCS C++ CODE BASE
L. Fröhlich∗, A. Aghababyan, S. Grunewald, O. Hensler, U. F. Jastrow, R. Kammering, H. Keller† ,
V. Kocharyan, M. Mommertz, F. Peters, A. Petrosyan, G. Petrosyan, L. Petrosyan, V. Petrosyan,

K. Rehlich, V. Rybnikov, G. Schlesselmann, J. Wilgen, T. Wilksen,
Deutsches Elektronen-Synchrotron DESY, Germany

Abstract
This contribution traces the development of DESY’s con-

trol system DOOCS from its origins in 1992 to its current
state as the backbone of the European XFEL and FLASH
accelerators and of the future Petra IV light source. Some
details of the continual modernization and refactoring efforts
on the 1.5 million line C++ code base are highlighted.

INTRODUCTION
DOOCS [1,2] started out at DESY in 1992 as a control

solution for vacuum devices – ion getter pumps and similar
equipment – for superconducting cavity test stands. Later it
was ported to the HERA [3] proton storage ring to replace
an older predecessor. It was built around Sun Microsystem’s
remote procedure call protocol (SunRPC) that continues
to be used today in many well-known services such as the
Network File System (NFS) under the newer name Open
Network Computing RPC (ONC RPC [4]).

At the time, object-oriented programming was quickly
establishing itself as the dominant programming paradigm,
which lead to the new system being called the ”distributed
object-oriented control system”, DOOCS. It was imple-
mented in C++, the natural choice for developing reliable
software that could use high-level abstractions, work with
limited resources, and access hardware efficiently. Java, the
next ”big” language to champion object-orientation, would
not be released to the public until 1994/1995 [5].

The C++ of the year 1992 was quite different from mod-
ern versions of the language. It was six years before the first
ISO standardization of the language [6], and many features
taken for granted today were still in their infancy: Tem-
plates, namespaces, and exception handling had just been
specified [7] but were not or only partially available on the
compilers of the time. The standard template library (STL)
and even the bool type would not be standardized until 1998.
It is therefore only natural that early DOOCS sources, al-
though heavily using classes and inheritance, look more like
low-level C than modern C++ from today’s perspective.

These first years established the backbone of DOOCS and
formed many of the conventions that shaped the develop-
ment of the code over the following two decades. Although
the code was continually extended and maintained, its basic
style changed relatively little until some years after the in-
troduction of C++11 [8]. Although the new standard could
not be adopted for the core libraries until 2018 due to lack
of compiler support on the Solaris platform, it lead to re-
∗ lars.froehlich@desy.de
† retired

newed interest in C++ and modern programming styles and
attracted new developers. Gradually, more and more effort
was put into the modernization of the code base. We are
going to highlight a few of the changes made during this
ongoing modernization effort below. For orientation, we
first give a brief overview of the DOOCS code base.

CODE ORGANIZATION
DOOCS consists of multiple libraries, tools, and servers,

the biggest part of which is written in C++1. Two libraries
form the core of almost every DOOCS application:

• The DOOCS client library (clientlib) provides the basic
functionality to list names() from the DOOCS name-
space and to send get() and set() requests over the
network. It also offers interoperability with other con-
trol systems such as EPICS [10] and TINE [11, 12]
by exposing some of their native functionality via the
DOOCS API.

• The DOOCS server library (serverlib) provides the
building blocks for a DOOCS server which accepts re-
quests from the network. It contains classes for proper-
ties of various data types and allows instantiating these
properties as members of locations with user-defined
functionality. It also handles archiving, configuration
management and related tasks.

These two libraries are complemented by approximately one
hundred other DOOCS-related libraries of various purposes,
ranging from support for specific hardware like cameras over
interfaces to data acquisition (DAQ) systems to high-level
algorithms for particle tracking.

Most of the DOOCS applications are servers. They con-
nect hardware devices such as beam position monitors or
vacuum pumps to the network, process and archive data,
run feedback loops, and execute complex algorithms for
advanced data evaluation. Currently, our repositories con-
tain source code for more than 500 different server types.
For most of these, multiple instances are running at one or
more of DESY’s accelerator facilities. Between libraries
and servers, the C++ code base consists of ∼8000 source
files with a total of ∼1.5 million lines of code2.

Figures 1 and 2 show the development of the number of
lines of code in the client- and serverlib over time. It is worth
noting that the clientlib was dominated by C code between

1 Notable exceptions are the JDOOCS client library for Java and tools
based on it such as the graphical user interface builder jddd [9]. Client
libraries for Python, Matlab, and LabView also exist and have spawned a
multitude of tools in these languages.

2 We count lines of code excluding comments and blank lines using the
cloc [13] utility.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV027

MOPV027C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

188 Software Technology Evolution



 0

 10

 20

 30

 40

 50

 60

1995 1998 2001 2004 2007 2010 2013 2016 2019 2022

L
in

e
s 

o
f 

C
o
d
e
 (

×
1
0
0
0
)

Year

C code

C++ code

Header code

C++ tests

DOOCS Clientlib

Figure 1: Lines of code excluding comments and blank lines
in the DOOCS clientlib. The plot differentiates between
C implementation files, C++ implementation files, header
files, and C++ unit tests. From 2003 to 2020, the library was
dominated by C code from the included TINE client library.

2003 and 2020 because of the inclusion of the full client and
server sources for the TINE control system. Since last year,
TINE is linked as an external shared library. This has allowed
us to preserve the full set of interoperability features without
having to deal with compiler warnings from its legacy code
base. A small amount of C code still remains for the interface
with the RPC library.

MODERNIZATION OF CODE AND
DEVELOPMENT TECHNIQUES

Modernizing a code base whose oldest parts date back
to 1992 has its risks. For the most part, bugs in the exist-
ing code have been ironed out many years ago, and refac-
toring tends to introduce new ones. The almost complete
absence of unit tests until 2018 means that inadvertent be-
havior changes introduced through modifications are very
hard to detect. Many desirable changes in libraries are also
impossible without sacrificing the stability of the applica-
tion programming interface (API), causing the need to adapt
huge numbers of dependent projects.

While all of these can be good reasons to leave existing
code untouched, we also observed several tendencies that
slowly became a cause for concern:

• Certain parts of the code had become so complex that
they could only be understood by single developers.

• Introducing new features was becoming harder and
more error-prone.

• Attracting new programmers to actively participate in
the development was becoming harder.

All of this lead us to the conclusion that a careful moderniza-
tion not only of the code base, but also of our development
techniques would be necessary to prepare DOOCS for future
projects. We set ourselves the following goals:

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

2010 2012 2014 2016 2018 2020 2022

L
in

e
s 

o
f 

C
o
d
e
 (

×
1
0
0
0
)

Year

C++ code

Header code

C++ tests

DOOCS Serverlib

Figure 2: Lines of code excluding comments and blank lines
in the DOOCS serverlib. The plot differentiates between
C++ implementation files, header files, and C++ unit tests.
Development started in 1992, but the history preceding the
year 2010 has been lost.

• Improve the readability of the code to make it easier
for all developers to understand how it works.

• Improve overall maintainability by better code organi-
zation and reduced complexity.

• Improve stability by eliminating sources of bugs, mem-
ory leaks, and undefined behavior.

• Improve teamwork by collaborative development tech-
niques and code reviews.

We discuss some of the measures taken in this spirit below,
but the list is necessarily incomplete. In fact, outside of the
core libraries individual developers have wide freedoms to
adopt them only partially or to go far beyond them.

More Modern C++ Constructs
A huge part of the changes that started in the middle of the

2010s regards the use of the C++ language and its standard
library itself:

Language standard: Solaris was dropped as a develop-
ment platform for DOOCS in 2018. This has allowed us
to use the C++14 [14] standard with the compilers for all
remaining supported platforms since then. We expect to
upgrade to C++17 [15] and possibly later standards in the
coming years when support for a few old Linux distributions
is dropped.

Templates had practically been banned from the core li-
braries after bad experiences with compilers in the 1990s.
Through their (re-)introduction, the amount of duplicated
code could be reduced dramatically while improving the
uniformity of interfaces and their type safety at the same
time. One of the visible effects for DOOCS users is the
availability of a full set of signed and unsigned integer types
in various bit widths.

Const-correctness was largely ignored in the original APIs.
Retrofitting const modifiers across API and inheritance
boundaries can be a delicate task as it often involves changes

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV027

Software Technology Evolution

MOPV027

189

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



to multiple projects at the same time. Although a lot of work
remains to be done, the public APIs have already improved
a lot and make it much easier to write const-correct code.

String handling in the original core libraries almost exclu-
sively meant dealing with C strings or raw memory. Some
of that code was rewritten to use the standard string or
string_view classes, dramatically reducing complexity,
line count, and room for errors. Virtually all of the user-
facing API now uses these classes in function signatures
instead of const char* or even char*.

Memory handling was mostly based on raw pointers and
explicit use of new and delete, making new code prone to
memory leaks. This type of code is gradually being replaced
by STL containers, RAII (resource acquisition is initializa-
tion) types, and smart pointers.

Algorithms from the STL were not widely used in the
original code base. Their increased application helps make
many code passages much more succinct and readable.

Standard types have replaced entire platform-specific li-
braries. For instance, the standard thread is now used
instead of its counterpart from the POSIX threads library.

Strong types are gradually being introduced to replace
fundamental types like int for specific applications (e. g.
Timestamp, EventId). This makes it harder to confuse
function parameters and allows enriching the type with func-
tionality and invariants.

Unit Tests
Apart from a few very limited integration tests, none of

the core libraries had a real test suite until 2018. At this point,
we started writing unit tests using the Catch2 [16] framework.
Most tests are written to assert the current behavior of the
code before modifying or refactoring it. Unfortunately, parts
of the code have complex dependencies that make testing
hard. This situation can only be improved through partial
rewrites in the long run. Both the client- and the serverlib
remain severely undertested with 1 line of tests for 16 lines
of code for the former and 1:8 for the latter, but the test suites
are growing continuously.

Build System
We are in the process of changing our build system from

make to Meson [17]. Overall, this makes our build setup
much simpler and less platform dependent. Meson was
chosen over similar alternatives because of its comparatively
simple syntax and because of in-house expertise.

General Utility Library GUL14
Even in comparatively small C++ code bases, some basic

functionality gets implemented again and again because
it is not available through the standard library – for in-
stance, a function to determine if a string contains another
string3. This has lead to the development of several base
libraries [18–20] in the industry attempting to fill this gap.
3 A contains() member function for the standard string class is only

expected for the 2023 language standard.

 0

 1

 2

 3

 4

 5

 6

2018 2019 2020 2021 2022

L
in

e
s 

o
f 

C
o
d
e
 (

×
1
0
0
0
)

Year

C++ tests

Header code (excl. Catch2)

C++ code

GUL14

Figure 3: Lines of code excluding comments and blank
lines in GUL14. The plot differentiates between header files,
C++ implementation files, and unit tests. We do not count
the header of the Catch2 unit testing framework which is
included in the library.

We evaluated several of them and, amid concerns about their
impact on our build process, found all of them lacking some
specific functionality that we needed.

In August 2018, we therefore started the development
of our own General Utility Library for C++14 (GUL14).
The library gathers code of wide applicability that has no
external dependencies except for the C++ and C standard
libraries. Specifically, it is free from control system specific
code. Among other fields, it covers string operations, con-
currency, time, statistics, numeric utilities, containers, and
backports of features from post-C++14 standard libraries
(e. g. string_view and span).

As it forms the basis for all other DOOCS libraries and ap-
plications, we strive for a very high quality level for GUL14:

• Style: Code must adhere to our C++ style guide and it
should follow the C++ Core Guidelines.

• Documentation: Every function, type, or other entity in
the API must be fully documented. This includes a clear
description of purpose and functionality. For functions,
all parameters, return values, thrown exceptions, and
pre-/postconditions are described. For classes, all class
invariants are clearly stated.

• Unit tests: Every entity in the library must have a set
of associated unit tests.

• Code review: Every commit to the library must be
reviewed by at least one developer. Every developer
must ensure that all of the other quality criteria are
fulfilled.

As shown in Fig. 3, the library is dominated by template
code residing in header files. The unit test suite has more
lines of code than the library itself.

GUL14 is open source and published under the GNU
Lesser General Public License v2.1 [21]. Unfortunately we
currently cannot publish the code on a third-party platform

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV027

MOPV027C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

190 Software Technology Evolution



like Github, but the source code and documentation are pub-
licly available [22] and external contributions are welcome.

Code Review
Code reviews are an excellent method to screen code

changes for defects. Maybe more importantly, they foster
mutual learning between developers and thereby help spread
expert knowledge. Unfortunately, they also take a substan-
tial amount of time. Owing to the already high workload
on our development team, we have adopted a multi-layered
guideline:

1. For GUL14, every commit must be reviewed and ac-
cepted by at least one other developer.

2. For the client- and serverlib, all but trivial commits
must pass review.

3. For other libraries, code review is strongly encouraged.
4. For servers and tools, code review is optional.

Code reviews typically take place via merge requests on an
on-site Gitlab web server.

Continuous Integration
The code for the core libraries is automatically compiled

and tested on multiple platforms by the Gitlab system after
each commit. In part, this includes address sanitizer and un-
defined behavior sanitizer builds, which generally provides
excellent early warnings against faulty code. We are also
looking into continuous delivery (CD) workflows for the
future.

Cross-Project Refactoring
Some refactorings, especially API changes in libraries,

require invasive modifications in user code. Although we
generally try to avoid such changes, a few of them are deemed
essential to fix architectural problems. Since DOOCS is used
almost exclusively at DESY with only few external users, we
are in the lucky situation that we have control over almost all
user code in our version control repositories. Refactorings
of low complexity (such as renaming a class member or a
header file) can therefore be automatically applied via text
substitution scripts. Where possible, the old API is marked
as deprecated and remains available for 1–2 years until it is
finally removed.

Training
Educating new programmers is essential to maintain a

capable control system software team. To this end, we are
providing a regular series of remote lectures on DOOCS
related topics. A C++ style guide provides orientation on
common coding conventions.

CONCLUSION
Next year, DOOCS will turn 30. As in any code base of

this age, some problems have accumulated over time and
tend to hinder further development. Since the mid-2010s,
however, we have invested more and more effort into the
continuous refactoring of the code and into a modernization

of our development process. We try to take advantage of
established best practices, of recent improvements of the C++
language itself, and of modern tooling to improve the quality
of the code and the cooperation between the developers. The
feedback received from our users makes us hopeful that we
are on the right path to prepare DOOCS for the future.

ACKNOWLEDGEMENTS
We would like to thank J. Georg, M. Hierholzer, D. Kalan-

taryan, M. Killenberg, and T. Kozak for contributing patches
and bug reports for the core DOOCS libraries. Innumer-
able colleagues from the the M-, FS-, and FH- groups have
helped shape the development of DOOCS over the years and
deserve our gratitude. We also acknowledge the continuous
support by the machine and research divisions at DESY, the
Helmholtz Association of German Research Centers, and
the European X-Ray Free-Electron Laser Facility GmbH.

REFERENCES
[1] O. Hensler and K. Rehlich, “DOOCS: A distributed object

oriented control system”, in Proc. XV Workshop on Charged
Particle Accelerators, Protvino, Russia, 1996.

[2] DOOCS homepage, https://doocs.desy.de

[3] G. A. Voss and B. H. Wiik, “The electron-proton collider
HERA”, Annual Review of Nuclear and Particle Science,
vol. 44.1, pp. 413-452, 1994.

[4] R. Srinivasan, RPC: Remote procedure call protocol specifi-
cation version 2, IETF Request for Comments 1831, August
1995, https://www.ietf.org/rfc/rfc1831.txt.

[5] D. Bank, The Java saga, Wired 3.12, Dec. 1995.

[6] International standard ISO/IEC 14882:1998, International
Organization for Standardization, Geneva, Switzerland, Sept.
1998.

[7] M. A. Ellis and B. Stroustrup, The Annotated C++ Reference
Manual, Addison Wesley, ISBN 0-201-51459-1, May 1990.

[8] International standard ISO/IEC 14882:2011, International
Organization for Standardization, Geneva, Switzerland, Sept.
2011.

[9] E. Sombrowski et al., “ ‘JDDD’: A Java DOOCS data display
for the XFEL”, in Proc. ICALEPCS07, Oct. 2007, pp. 43–45.

[10] L. R. Dalesio et al., “EPICS architecture”, Proc.
ICALEPCS91, Nov. 1991, pp. 278–282.

[11] P. Bartkiewicz and P. Duval, “TINE as an accelerator
control system at DESY”, Meas. Sci. Technol., vol. 18,
pp. 2379–2386, 2007. doi:10.1088/0957-0233/18/8/
012

[12] P. Duval et al., “Control system interoperability, an extreme
case: Merging DOOCS and TINE”, in Proc. PCaPAC2012,
Dec. 2012, pp. 115–117.

[13] cloc tool for counting lines of code, https://github.com/
AlDanial/cloc

[14] International standard ISO/IEC 14882:2014, International
Organization for Standardization, Geneva, Switzerland, Dec.
2014.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV027

Software Technology Evolution

MOPV027

191

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



[15] International standard ISO/IEC 14882:2017, International
Organization for Standardization, Geneva, Switzerland, Dec.
2017.

[16] Catch2 unit test framework, https://github.com/
catchorg/Catch2

[17] Meson build system, https://mesonbuild.com/

[18] Google Abseil library, https://abseil.io/.

[19] Bloomberg BDE libraries, https://github.com/
bloomberg/bde

[20] Facebook folly library, https://github.com/facebook/
folly

[21] GNU Lesser General Public License version 2.1, https:
//www.gnu.org/licenses/old-licenses/lgpl-2.1

[22] General Utility Library for C++14, https://winweb.desy.
de/mcs/docs/gul/index.html

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV027

MOPV027C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

192 Software Technology Evolution


