
TangoGraphQL: A GraphQL BINDING FOR TANGO CONTROL SYSTEM
WEB-BASED APPLICATIONS

J.L. Pons, European Synchrotron (E.S.R.F), Grenoble, France

Abstract
Web-based applications have seen a huge increase in

popularity in recent years, replacing standalone
applications. GraphQL provides a complete and
understandable description of the data exchange between
client browsers and back-end servers. GraphQL is a
powerful query language allowing API to evolve easily and
to query only what is needed. GraphQL also offers a
WebSocket based protocol which perfectly fits to the Tango
event system. Lots of popular tools around GraphQL offer
very convenient way to browse and query data.
TangoGraphQL is a pure C++ http(s) server which exports
a GraphQL binding for the Tango C++ API.
TangoGraphQL also exports a GraphiQL web application
which allows to have a nice interactive description of the
API and to test queries. TangoGraphQL has been designed
with the aim to maximize performances of JSON data
serialization, a binary transfer mode is also foreseen.

INTRODUCTION
Today, at the ESRF [1], we use mainly Java standalone

applications for the accelerator control system. These
applications are built on top of the Java Swing ATK
framework [2] and Tango java APIs. Today, regarding
GUI technologies, we see almost only development around
web technologies such as React, Angular, Vue.js, Bootstrap,
Material UI, etc... It is natural that we migrate our GUIs to
web based applications. Java ATK is based on the Model
View Controller model. React (Facebook) offers a very
convenient way to implement this model using hooks.
GraphQL [3], initially developed by Facebook in 2012,
was moved as open source to the GraphQL foundation. A
JavaScript Tango Web ATK built on top of React and
GraphQL is currently under development at the ESRF. This
framework is designed in order to ease as much as possible
the migration of our Java applications.

ARCHITECTURE
MVC Model using React

React function components offer hooks that can be used
to implement the MVC model. The key idea is to use the
state hook and to pass the setState function handle as a
dispatcher to the model. A layoutEffect hook handles the
subscription in the listener list of the model as shown in
Fig. 1.

The model (the GraphQL client) makes access to Tango
devices using the TangoGraphQL server either through
basic HTTP requests or through WebSocket as shown in
Fig. 2.

Figure 1: MVC using React.

Figure 2: Architecture.

GRAPHQL
GraphQL vs REST

Compared to a REST API, GraphQL is a true query
language allowing clients to query only what is needed in
a single HTTP request. GraphQL also provides an
introspection system giving information about the
supported schema. GraphQL uses GraphQL query to
perform introspection. The GraphQL foundation provides
a web application called GraphiQL, based on this
introspection system, enabling users to write query using
modern tools such as completion, syntax checking and
documentation browsing. It uses the Tango GraphQL
schema definition [4] to provide all these features to the
Tango GraphQL API. TangoGraphQL C++ server also
exports a GraphiQL interface.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV025

Software Technology Evolution

MOPV025

181

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Figure 3: WebATK Panel.

GraphQL Tango API
The GraphQL Tango API must provide all calls needed

to build any applications including generic applications
such as ATKPanel. WEBAtkPanel shown in Fig. 3 makes
an introspection of the Tango device to display all its
attributes and commands.

GraphQL defines 3 types of request: query, mutation and
subscription. Queries are read only requests (basically a
Tango read_attributes call), mutations are write requests
(write_attributes or command_inout) and subscriptions are
used to register to Tango events. The requests are sent to
the server via a HTTP POST request.

When registering to an event, the TangoGraphQL server
will push JSON frames when a Tango event is sent by the
Tango server. When using the GraphQL over WebSocket
protocol [5], the client (and the server) use the socket in a
bidirectional mode (full duplex), which means that the
client (or the web server) can send or receive requests at
any time.

PERFORMANCE
Error Management

The GraphQL error management standard is not very
convenient. When a node cannot be returned, the GraphQL
standard impose that the node must be null and an
additional errors JSON block has to be filled with errors.
With large queries which may contain lots of errors, the
browsing of this additional error tree is a bit heavy.
TangoGraphQL server handles Tango errors as queries for
best performance and keep GraphQL standard for parsing
errors.

Binary Transfer
A GraphQL internal parser has been written from scratch

and designed to support a true binary JSON transfer
currently under development. Binary transfer is not a part
of the GraphQL and JSON standard but it can be added
without breaking the GraphQL compatibility by using
HTTP header. Despite the fact that TangoGraphQL uses
fast floating point serialization algorithm Grisu2 [6] from
Florian Loitsch, image and spectrum need to be transferred
in binary format in order to reach good performance at both
server and client side. On the client side, binary transfer
can be easily achieved using native JavaScript DataViews
and ArrayBuffer. Table 1 shows timing measurement of the
TangoGraphQL C++ server for a spectrum of 16383
random double values, the JSON encoding in text format
is done using Grisu2.

Table 1: TangoGraphQL Server Performance

 TEXT,
16digits

BIN, 64bits

Get HTTP request 1ms 0.9ms

Tango reading 0.9ms 0.9ms

JSON encoding 6ms (Grisu2) 0.3ms

Send HTTP response 0.4ms 0.3ms

Asynchronous Group Calls
When the client needs to retrieve data from several

devices (typically the state of n devices), the client can
construct a GraphQL request using labeling. The server can
detect labeled read_attributes calls and launches parallel
asynchronous calls using Tango Group calls.

Load Balancing
TangoGraphQL is also a Tango server and can be

configured, monitored or instantiated using standard Tango
tools. It also has attributes that indicates number of
connected clients, number and type of connections,
network transfer, etc… The client can use this information
to select the less loaded instance among a set of running
TangoGraphQL servers as shown in Fig. 4.

Figure 4: Load balancing model.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV025

MOPV025C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

182 Software Technology Evolution

TCP Connection
TangoGraphQL server uses multi-threaded connection

handling and is HTTP 1.1 compliant. It uses the fact that in
HTTP 1.1 the TCP connection can be persistent (keep-
alive). The server keeps a “device factory” during all the
TCP connection life cycle. This prevents from re-importing
and re-introspecting each time Tango devices and avoids
unwanted overhead with the Tango database and devices.
When the connection is closed, TangoGraphQL releases all
allocated resource associated to the connection.

CONFIGURATION
TangoGraphQL server can be configured using Tango

properties:
• Port: HTTP server port (default is 8000)
• IdleTimeout: Timeout before closing a HTTP

connection (default is 60s)
• Authentication: None or Basic
• Users: List of allowed users, (List of userName:

sha1Password)
• AllowMutation: Allow mutation mode (ALWAYS,

AUTHENTICATED, NEVER).
• exportGraphiQL: True to enable GraphiQL (available

via http(s)://host:port/graphiql/)
• httpsEnable: Enable HTTPS server (need certificate)
• httpsCertificate: Link to the certificate file cert and its

privKey file. (The server needs read access to this 2
files)

• ResolveClientIP: Resolve names in (connected) clients
attribute

AUTHENTICATION AND ACCESS
CONTROL

TangoGraphQL uses Open SSL for https with basic
HTTP authentication scheme. Single SignOn
authentication scheme is currently under development.
Tango Access Control cannot be implemented using
Tango 9 as it is not possible to set a username for a Tango
client thread. This will require new feature of Tango 10.

CONCLUSION AND DISCUSSIONS
After an investigation done at the ESRF of the 4 present

solutions (including the one presented in this paper) for a
Tango backend, GraphQL appears to be the best alternative.

• Tango Rest API (java REST API on top of Apache) [7]
• RestDS (& RestDS2) (C++ REST API on top of boost

HTTP server) [8]
• MaxIV TangoQL (Python GraphQL on top of

AIOHTTP & Graphene) [9]
In this paper, a C++ implementation of a Tango

GraphQL schema is presented and express the minimum
requirements we have at the ESRF in order to make the
transition from our Java applications to Web applications
possible. The GraphQL schema is not fixed; it may evolve
over time, using deprecations, for example. The schema
proposed here is still open to discussion. The goal is for the

community to converge on a common GraphQL
specification which can be supported by multiple
implementations.

REFERENCES
[1] European Synchrotron Radiation Facility,

https://www.esrf.fr

[2] Java ATK framework,
https://gitlab.com/tango-controls/atk

[3] GraphQL Foundation,
https://graphql.org/

[4] Tango C++ GraphQL GitLab,
https://gitlab.com/
tango-controls/TangoGraphQL

[5] GraphQL over WebSocket Protocol,
https://github.com/enisdenjo/graphql-ws

[6] Florian Loitsch, “Printing floating-point numbers quickly and
accurately with integers”, in Proc. 31st ACM SIGPLAN
Conference on Programming Language Design and
Implementation, June 2010, pp. 233-243.

[7] Java TANGO REST API,
https://tango-rest-api.readthedocs.io/en/
latest

[8] Sedykh, G.S et al., “The C++ TANGO REST API
Implementation”. Phys. Part. Nuclei Lett. 17, 604–606 (2020).
https://doi.org/10.1134/S1547477120040391

[9] TangoGQL, MaxIV,
https://developer.skao.int/projects/web-
maxiv-tangogql/en/latest/

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV025

Software Technology Evolution

MOPV025

183

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

