
KARABO DATA LOGGING:
InfluxDB BACKEND AND GRAFANA UI

G. Flucke∗, V. Bondar, R. Costa, W. Ehsan, S. G. Esenov, R. Fabbri, G. Giovanetti, D. Goeries,
S. Hauf, D. G. Hickin, A. Klimovskaia, A. Lein, L. Maia, D. Mamchyk, A. Parenti, G. Previtali,

A. Silenzi, D. P. Spruce1, J. Szuba, M. Teichmann, K. Wrona, C. Youngman
European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany

1now at MAX IV, Fotongatan 2, 22484 Lund, Sweden

Abstract
The photon beam lines and instruments at the European

XFEL (EuXFEL) are operated using the Karabo control
system that has been developed in house since 2011. Moni-
toring and incident analysis requires quick access to historic
values of control data. While Karabo’s original custom-built
text-file-based data logging system suits well for small sys-
tems, a time series data base offers in general a faster data
access, as well as advanced data filtering, aggregation and
reduction options. EuXFEL has chosen InfluxDB as back-
end that is operated since summer 2020. Historic data can
be displayed as before via the Karabo GUI or now also via
the powerful Grafana web interface. The latter is e.g. used
heavily in the new Data Operation Center of the EuXFEL.
This contribution describes the InfluxDB setup, its transpar-
ent integration into Karabo and the experiences gained since
it is in operation.

KARABO AND THE EuXFEL
The European X-ray Free Electron Laser (EuXFEL) facil-

ity [1] provides hard and soft X-ray beams at three photon
beamlines to six instruments. Up to 27,000 photon pulses
per second are arranged into 10 Hz trains with an intra-train
pulse repetition rate of 4.5 MHz. The Karabo framework [2–
4] has been designed and developed in-house since 2011
for control, online data analysis, and data acquisition at the
photon beam lines and the scientific instruments.

In Karabo, so-called devices communicate via a central
message broker. All devices using the same broker topic
form a Karabo installation. Whereas broker communication
is considered to be “slow” data, big or “fast” data like images
are sent via TCP/IP data pipelines that can be flexibly con-
figured, e.g. for calibration, analysis, or preview purposes.
Figure 1 gives an overview of a Karabo installation.

A Karabo device exposes a self-description of its control
interface, i.e. its schema. Karabo’s generic graphical user
interface (GUI) uses the schema to render the representation
of a device. Devices can have one of manifold tasks:

• interface some hardware like a pump or a motor,
• control a detector and read out its data,
• analyse data,
• orchestrate other devices,

∗ gero.flucke@xfel.eu

Figure 1: A Karabo installation showing Karabo devices
with various tasks. Broker and pipeline communication lines
are indicated.

• provide a system service like serving as entry point
for the GUI, logging data, managing alarm states, or
managing configurations.

To communicate with each other, the Karabo devices ex-
pose methods that can be called remotely in the distributed
system. Besides being directly called, these slots can be
subscribed to signals of other devices. When such a signal
is emitted with arguments, all subscribed slots are called
with these arguments. In the process, only a single message
is sent to the broker that distributes the message according
to the subscriptions, as is shown in Fig. 2. This signal/slot
mechanism allows Karabo to be fully event-driven, regular
polling of e.g. device properties is not needed. That a single
message to the broker is sufficient also for a device with a
signal that many other devices have subscribed to, ensures
that there is no overhead for such a “popular” device.

FIRST KARABO DATA LOGGING
IMPLEMENTATION

Data logging in a Karabo installation is organised via a few
dedicated devices. A “data logger” device (or several that
share the load) subscribes to the signal for property updates
of the other devices. Properties are configuration parameters
or read-only values like the reading of a temperature sensor.
Via the signal/slot mechanism, the logger is informed about
every property update and when this update occurred, i.e.
the timestamp of the update, and stores it in the backend of
the logger. Similarly, the device schema and its potential

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOBL04

MOBL04C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

56 Software Technology Evolution

Figure 2: Karabo signal/slot messaging via the broker.

run-time updates are stored. “Data log reader” devices are
responsible to read back the stored data. One can query
either the changes of a property in a time interval (trendline
data) or all properties of a device and its schema at a given
point in time. A single “Data logger manager” device per
Karabo installation orchestrates loggers and readers.

The first Karabo data logging implementation, started in
2014, was based on human readable ascii files. Each file
logs properties of a single device with one line per property:

20200719T184128.573059Z
|1595184088.573059|804227972
|actualPosition|FLOAT|35.91043||VALID

Besides the timestamp in two formats and the correspond-
ing id of the EuXFEL train of photon bunches, the name,
type and value of the property, and some meta information
is logged. A further file stores the device schema, serialised
to an XML format. To reasonably speed-up reading all prop-
erty updates in a time interval, binary index files are created
per property of interest. Figure 3 shows the result of such
trendline requests in the Karabo GUI. The actual position
of a motor and its state are displayed, as part of an incident
analysis. Since Karabo is event-driven, no new data points
exist when the motor is not moving. The zoom into the end
of the curve shows that the motor decelerated and got stuck
– in fact, the detector moved by the motor collided with
another object since, after a change of the setup, the limit
switch that would prevent such collisions was unfortunately
not adjusted.

Due to limited screen resolution, a GUI cannot display
arbitrary details of a trendline. Therefore, the trendline data
request specifies a maximum number of points to return.
If the requested time interval contains more data points, a
simple down-sampling algorithm is applied: just every 2nd,3rd, etc. data point is returned.

Drawbacks
Deployment of such a logging and data retrieval mech-

anism is easy since it depends only on the availability of
disc space and therefore suits well for small Karabo instal-
lations. On the other hand, operation at EuXFEL reveals
some (obvious) drawbacks. Storing data in text files does not
scale well concerning disc space. At EuXFEL, data older
than three months were automatically moved to an archival

Figure 3: Historic trendline data for the position in mm of a
motor that is moved back and forth, overlayed with a zoom
into the right end of the curve (top), and the corresponding
motor state changes (bottom).

location. Hence, access to such data required extra effort.
Furthermore, data read-out could be slow: depending on the
number of property updates since a device was last restarted,
reading back the configuration of a device at a given point
in time could take in the order of minutes. The lack of statis-
tical methods for data downsampling could result in the loss
of short timescale features in the data. Two requests of the
same data with only slightly differing time intervals could
return markedly different data, due to the sparsing algorithm
that was implemented.

TRANSITION TO AN INFLUXDB
BACKEND

Given the drawbacks of the ascii file based solution, the
Karabo development team looked for a better storage back-
end. Timeseries databases were considered to be particularly
well suited, as they are optimised for retrieving data along the
time axis. InfluxDB [5], Prometheus [6], and Timescale [7]
were considered and finally InfluxDB was chosen. A proto-
type Karabo device interacting with an InfluxDB proved the
feasibility in 2018.

In order to allow for a transparent transition and to keep
the text based logging backend available for small Karabo

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOBL04

Software Technology Evolution

MOBL04

57

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Figure 4: Schematic view of Karabo data logging and its InfluxDB backend.

installations, a new logger and a new log reader device were
developed. The logger manager device is now configurable
to switch between ascii file and InfluxDB backend.

An InfluxDB installation can host many independent
databases. All data of a Karabo installation is stored in one
such database, identified by the broker topic of the Karabo
installation. Each device is mapped to three InfluxDB mea-
surements, one for the schema, one for events like device
instantiation and shutdown, and the main one for the de-
vice properties. InfluxDB fields relate to Karabo proper-
ties. To ease schema evolution of devices like changing
the data type of a property, the field name is suffixed with
its type, e.g. actualPosition-FLOAT. The mapping be-
tween the Karabo and InfluxDB supported types is straight
forward for integer or floating point numbers, booleans
and strings. Special treatments are needed for the follow-
ing cases: Non-numeric floating point values (nan, inf)
are stored as strings in fields with an extended field name
suffix (e.g. -FLOAT_INF), unsigned 64-bit integers are re-
interpreted as signed integers, and newline characters in
strings have to be mangled. Since InfluxDB does not sup-
port arrays, vectors of numbers are stored as comma sepa-
rated strings. To overcome the ambiguity between an empty
vector of strings and a vector with a single empty string,
vectors of strings are stored as the base64 encoded JSON
representation. Only the Karabo specific data types like raw
binary data, table data, and the schema require Karabo for
de- and encoding. These types are stored as base64 encoded
result of Karabo’s binary serialisation.

Many devices update their schema regularly at run time,
but typically only a few schema variants exist. Since the
serialised binary of a schema (i.e. the self-description of a
device) can easily surpass 500 kB, only a schema digest is
stored for every update. The schema itself is only stored
when the value of such a digest is not yet stored in InfluxDB.

Property updates are transmitted from the data logger
device to database backend using the InfluxDB line proto-
col. By default, data is flushed when at least 200 lines are
accumulated.

Figure 4 shows a schematic overview of the Karabo data
logging infrastructure with its InfluxDB backend. About
20,000 devices with roughly 2 million properties are dis-
tributed among twelve Karabo installations that communi-
cate via six broker instances. In total, 75 data logger devices
write to a single load-balancer. The balancer duplicates and
forwards the data, once to a standalone InfluxDB instance
running the open source edition, and once to a cluster of
two instances for data and service redundancy. Running
instances in a cluster requires the InfluxDB enterprise edi-
tion. In case one of the two storage locations is down, the
balancer caches the data in memory. The cluster is the main
backend, serving Karabo initiated read requests, whereas the
open source instance can be used by other services, without
interfering with the control system.

Performance and Operational Experience
InfluxDB data logging at the EuXFEL is in production

since summer 2020; data from January 2020 onward has
been migrated into the new system. So far, more than 240
billion property updates have been stored, increasing by
about 10 billion each month. In total, about 14 TB of disc
space is needed per InfluxDB node so far.

The network input to the load balancer is typically about
20 Mb/s, but varies, reflecting that Karabo is event-driven
and that the list of Karabo devices that are online at any
given point in time can vary. Usually, the data is available
for reading with a delay of about 30 s only. This performance
was significantly compromised when a Karabo device in-
jected data with timestamps months in the future. Due to the
internal data layout in InfluxDB shards containing temporal
blocks of data, the database frequently internally reorganised

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOBL04

MOBL04C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

58 Software Technology Evolution

c)

a) b)

Figure 5: Examples of data displays using Grafana: The ratio of properties from two different devices (a), an overlay of
minimum, mean, and maximum of a data trendline that has too many points to show them all (b), and the visualisation of
the time development of a string property (c).

data, and the latency increased to over an hour. If there are
too many points in a requested time span, down-sampling
of trendline data is done in InfluxDB by querying averaged
data in equally spaced time intervals. Therefore, short-term
features are better preserved and data requested for only
slightly different time intervals is more uniform.

All the data stored so far (> 1.5 years) is quickly available.
A GUI request to display one week of data of a property that
updates every 5 s (and therefore needs averaging) is almost
instantaneous.

The planned 3 years of data retention will be affordable.
In addition, the InfluxDB internal organisation of the data
in shards offers the possibility to keep a reduced set of the
data (e.g. averages) for even longer.

GRAFANA USER INTERFACE
Using InfluxDB instead of a custom data storage backend

allows external tools to query, retrieve and visualise the data.
At the EuXFEL, Grafana [8] has been chosen due to its
rich feature set, the fact that both Influx query languages,
InfluxQM and Flux, are exposed, and due to a large and
active online community that provides many examples.

The resulting low entry threshold enables non-developers
to create data views in so-called dashboards, available for
others. A nice example of a simple data display that is not
easily available within Karabo is the correlation of proper-
ties of different devices, see Fig. 5a). When down-sampling

is needed, further statistical options besides averaging are
available, e.g. minimum and maximum value within the
evaluated interval. Overlaying all three as in Fig. 5b) al-
lows allows efficient visualisation of trends alongside outlier
preservation. Grafana can even be extended by plugins. The
one used in Fig. 5c) displays the time evolution of a string
that changes between a few discrete values.

Besides usage in the instrument hutches, Grafana dash-
boards have become a key element of the Data Operation
Center (DOC) at the EuXFEL. The DOC is a co-effort of Eu-
XFEL’s Data Department groups: Controls, Electronic and
Electrical Engineering, Data Analysis, IT & Data Manage-
ment, and Detector Operation. The DOC monitors services
that the department provides during X-ray operation, and
gives pro-active support for the scientific instruments. The
main Grafana dashboard of the DOC gives an overview of
the status of the most important services and displays alerts
if something is outside its expected range, e.g. the frame rate
of centrally triggered cameras, see Fig. 6. In this example,
the status overviews show no errors whereas the DOC alerts
show some long lasting, non-critical problems1. Scientific
data taking and detector calibration processing are followed
closely. For similar systems placed at several instruments,
the pull-down menu of a generic dashboard can be used
to switch between the different installations, enabling the

1 Further fine tuning is needed to avoid their appearance on the main page.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOBL04

Software Technology Evolution

MOBL04

59

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Figure 6: The main Grafana dashboard of the EuXFEL Data Operation Center (DOC), selected to focus on the HED, FXE
and SQS instruments.

DOC shift crew to change focus, depending on the running
scientific programme, but keeping a unified layout.

CONCLUSIONS
The event-driven, broker-based control system Karabo is

used to operate the photon tunnels and scientific instruments
at the EuXFEL. Its first ascii file based data logging system
was able to fulfil the initial needs, but the longer the facility
operated, the clearer it became that the file based backend

does not scale well with long term operation. Furthermore,
the poor down-sampling capability sometimes confused op-
erators interested in the past state of their system.

A new storage backend using InfluxDB has been devel-
oped and is now in operation at the EuXFEL since summer
2020. The goals to overcome slow responses and the lack
of statistical methods for data read-back have been met.

Even more, the storage in a community-driven backend
allows using a well developed data display and analysis tool,

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOBL04

MOBL04C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

60 Software Technology Evolution

Grafana, without interference with the control system. Its
wealth of features and online examples made Grafana dash-
boards a key ingredient of the new EuXFEL Data Operation
Center that focuses the support of the scientific programme
given by the EuXFEL Data Department.

All together, the efforts to interface Karabo data logging
with InfluxDB and to setup a reliable database infrastruc-
ture have surpassed the expectations to improve the user
experience when interacting with historic data in the Karabo
control system.

REFERENCES
[1] M. Altarelli, “The European X-ray free-electron laser facility

in Hamburg,” Nuclear Instruments and Methods in Physics
Research Section B: Beam Interactions with Materials and
Atoms, vol. 269, no. 24, pp. 2845–2849, 2011.

[2] B. C. Heisen et al., “Karabo: An integrated software frame-
work combining control, data management, and scientific com-

puting tasks,” in Proc. 14th Int. Conf. on Accelerator and
Large Experimental Physics Control Systems (ICALEPCS’13),
(San Francisco, CA, USA), JACoW Publishing, Oct. 2013,
pp. 1465–1468.

[3] S. Hauf, B. Heisen, et al., “The Karabo distributed control
system,” J. Synchrotron Rad., vol. 26, pp. 1448–1461, 2019,
issn: 1600-5775. doi: 10.1107/S1600577519006696.

[4] G. Flucke et al., “Status of the Karabo control and data pro-
cessing framework,” in presented at the 17th Int. Conf. on
Accelerator and Large Experimental Physics Control Systems
(ICALEPCS’19), (New York, NY, USA), JACoW Publishing,
Oct. 2019, p. 938.

[5] InfluxData Inc., InfluxDB, https://docs.influxdata.
com/influxdb.

[6] Prometheus, https://prometheus.io.
[7] Timescale, Timescale, https://www.timescale.com.
[8] Grafana Labs, Grafana, https://grafana.com.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOBL04

Software Technology Evolution

MOBL04

61

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

