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Abstract
Recent advances make machine learning (ML) a powerful

tool to cope with the inherent complexity of accelerators,
the large number of degrees of freedom and continuously
drifting machine characteristics.

A diverse set of ML ecosystems, frameworks and tools
are already being used at CERN for a variety of use cases
such as optimization, anomaly detection and forecasting.
We have adopted a unified approach to model storage, ver-
sioning and deployment which accommodates this diversity,
and we apply software engineering best practices to achieve
the reproducibility needed in the mission-critical context of
particle accelerator controls.

This paper describes CERN Machine Learning Platform
(MLP) - our central platform for storing, versioning and de-
ploying ML models in the CERN Control Center. We present
a unified solution which allows users to create, update and
deploy models with minimal effort, without constraining
their workflow or restricting their choice of tools. It also
provides tooling to automate seamless model updates as the
machine characteristics evolve. Moreover, the system allows
model developers to focus on domain-specific development
by abstracting infrastructural concerns.

MOTIVATION
Machine learning techniques and in particular neural net-

works are well suited to the unique challenges of particle
accelerator controls [1]. Neural networks are already being
used in CERN controls for a variety of use cases includ-
ing anomaly detection [2], trajectory steering at LINAC4
and AWAKE [3], beam measurements [4] and collimator
alignment [5] in the LHC.

In recent years, the rapid expansion of the ML ecosys-
tem and the emergence of MLOps has created a multitude
of tools and frameworks to assist data scientists with dif-
ferent aspects of the ML development workflow. These
include tooling for experiment tracking and model man-
agement (e.g. Neptune [6], Comet [7]), feature storage
(e.g. Feast [8]), pipeline and workflow automation (e.g.
Pachyderm [9], Airflow [10]), hyper-parameter tuning (e.g.
Katib [11], Sigopt [12]), deployment (e.g. Seldon [13]) and
monitoring (e.g. Fiddler [14], Evidently [15]). Comprehen-
sive tools which aim to address the whole ML lifecycle also
exist, both open source (e.g. MLFlow [16], Kubeflow [17])
and proprietary (e.g. AWS Sagemaker [18], GCP Vertex
AI [19]).

However, none of these comprehensive tools fit the use-
cases required by CERN controls – they either constrain
model developers’ workflows or require in-depth knowledge

of infrastructural tooling. Furthermore, these tools do not
fully address requirements specific to accelerator controls
such as high criticality, continuously drifting machine char-
acteristics, variety of use-cases (online and offline, embed-
ded and standalone) and the need to maintain different model
configurations for each accelerator beam type.

For these reasons we present a machine learning plat-
form (MLP) specific to CERN controls. It addresses the
aforementioned issues by abstracting and simplifying model
management, storage, and deployment concerns. In addi-
tion, it is open and extensible by design to cope with the
rapidly evolving ML landscape and lack of generally ac-
cepted industry standard for MLOps. For the same reason,
it is designed to be compatible with diverse ML model train-
ing environments (local, CERN infrastructure, and public
cloud). Helping with rapid development of new models with
tools such as experiment tracking or workflow automation
are not goals of MLP – instead, it is designed to integrate
with existing solutions.

CONCEPTS
We define models as the combination of a model type

and model parameters. Model types contain the algorithm
and logic of the model, e.g., the neural network architecture,
the framework, and data pre- and post-processing. Model
parameters are the data which configures the model type,
e.g. trained weights of neural networks, and any other con-
figuration variables. As the format of model parameters is
highly dependent on the framework used1, we decided to
treat model parameters as opaque data, which we store but
don’t inspect within MLP.

A given model type can be associated with multiple model
parameters. One use case for this is the use of different
model parameters for each type of particle beam produced
by the accelerators. The opposite is also true, given model
parameters can be associated with different model types. For
example, a given set of trained neural network weights can
be used by a same model surrounded by different pre- and
post- processing logic for different use cases.

Model types and model parameters evolve independently
and are versioned separately, so we define model type ver-
sions (MTV) and model parameters versions (MPV). MTVs
and MPVs compatibility follows a many-to-many relation-
ship, as shown in Fig. 1.

The combination of an MTV and a compatible MPV forms
a model. Models are fully configured neural networks or

1 Common formats such as ONNX [20] exist but don’t support certain
operations such as custom layers or loss functions.
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Figure 1: Model types, models parameters and compatibility.

other algorithms which can perform predictions. They ex-
pose a uniform prediction API. Models can be both embed-
ded into a client process or deployed as a standalone process
and accessed remotely.

MODEL DEVELOPMENT AND USAGE
WORKFLOW

MLP has been designed in collaboration with ML model
developers and follows their general workflow without re-
stricting it. This section describes MLP features in the order
in which they appear in a typical workflow.

Defining a Model
Developers define models exposing a common interface,

the MLP Model API. This interface defines four operations:

1. a fit operation to train the model on the provided input
data;

2. an export parameters operation to extract the current
values of all model parameters;

3. an import parameters operation to configure the model
using the provided parameters;

4. and a predict operation to return a prediction from the
input data.

Registering Model Types
MLP aims to minimize the impact on model developers’

workflow by automating management actions as much as
possible. Nowadays the majority of model developers use
Git as a version control system for their source code, and of-
ten use git tags to label particular versions of interest. MLP
leverages git tags to automate model type registration: model
types are registered automatically when developers push new
tagged versions of their model code. A single project can
contain multiple models (for example, this is crucial for com-
posite models such as Auto-Encoders [21]). When a new
version of the project code is pushed, one MTV is automat-
ically registered within MLP for each model belonging to
the project.

Publishing Model Parameters
Model parameters registration cannot re-use the same

mechanism as model types since model parameters are cre-
ated programmatically, practically never stored in git due to
their large size and usually created at the end of a lengthy
training process. Without using MLP, many model devel-
opers at CERN export the trained parameters to disk or an

external service within the training script. This requires han-
dling infrastructural concerns such as where to store these
weights, how to version them, how to share them with other
developers, monitoring the disk space available, etc. This
often results in inconsistent naming patterns and file loca-
tions which creates additional complexity and a maintenance
challenge.

MLP addresses these concerns by providing a client li-
brary to register trained parameters. Developers simply pro-
vide the model instance, a name for the trained parameters
and a version number.

In continuous retraining use-cases, users can also leverage
the version generation feature and let MLP decide which
version number to assign to the new model parameters ver-
sion to avoid implementing a complex versioning algorithm
themselves.

Based on semantic versioning [22], the automated ver-
sioning logic is optimized for common use cases and looks
at a limited amount of information to make an informed de-
cision: the currently used MTV and the compatible MPVs
registered in MLP. It will refuse to guess in the face of am-
biguity. Table 1 illustrates the version guessing behavior for
the most common cases.

Table 1: Model Parameters Version Number Generation

MTV Highest MPV ⟹ Generated MPV

1.0.0 none exist yet ⟹ 1.0
1.0.0 1.0 ⟹ 1.1
1.6.0 1.1 ⟹ 1.2
2.0.0 1.2 ⟹ 2.0
3.3.0 4.0 (no 3.x) ⟹ ambiguity
3.3.0 4.0 (3.3 exists) ⟹ 3.4

Managing Compatibility
The default behavior of the platform is optimized for the

common use case while leaving the model developer in full
control. When a MPV is published from a MTV instance, a
compatibility link between them is created automatically.

Furthermore, MLP, based on semantic versioning, makes
new MTVs inherit all the compatible MPVs from the previ-
ous MTV with the same major version number. The same
applies to MPVs. When a breaking change is made to a
model type or model parameters and compatibilities should
not be copied from the previous version, model developers
should bump the major version to indicate the backward-
incompatibility to MLP and then the compatibilities will not
be copied. For niche use cases, it is also possible to disable
compatibility copying on creation. Compatibility links can
also be added and removed manually using the client library.

Using Embedded Models
To embed an MLP model in an application written in

the same language as the model, developers should use the
client library to instantiate an embedded model. The client
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application must specify the class of the locally available
model type version and provide a parameters name and ver-
sion. The client library will then take care of retrieving the
appropriate MPV and load them into the model.

Users can also choose to always use the latest compatible
parameters version. This is the right choice for most use
cases. Together with automatic versioning, this provides a
way to update running models automatically.

Using Standalone Models
MLP models can also be used as standalone models and

accessed remotely using the standalone model API. Users
connect to the model by specifying the model type name
and model parameters name; they can then use the model as
if it was available locally.

This not only allows models to be called from any lan-
guage that supports HTTP requests, but also enables client
applications to always use the latest models with no effort
required from application developers. Standalone models
serve prediction requests over the network, allowing them to
be called from any language, not just the language in which
they were written.

IMPLEMENTATION
The main components of the implementation are the

model API, the client library, the model registry server, and
the standalone serving cluster. A simplified overview of the
system architecture is presented in Fig. 2.

Model API
Today, the machine learning landscape is heavily domi-

nated by Python and virtually all models at CERN are im-
plemented in the Python language. For this reason, MLP
models are currently restricted to Python and the model API
is implemented using Python abstract base classes [23]. A
model class must implement the MlpModel interface (see
Fig. 3) to be considered a model type by the Machine Learn-
ing Platform. This is usually accomplished through direct
inheritance, although other methods for niche use cases exist.
Default extensible implementations of parameter saving and

loading logic are provided for commonly used frameworks
(tensorflow [24], pytorch [25], scikit-learn [26]) to facilitate
the implementation.

Figure 3: Class Diagram of the MLP Model API.

Model Registry Server
The model registry server is responsible for storing and

managing MTVs, MPVs and their compatibilities. It also
provides the version generation logic described above. It
is implemented as a standard Java/Spring Boot application
exposing REST endpoints and documented with Swagger. It
uses a relational database to store MTV, MPV and compati-
bility metadata and an object storage service to store MPV
binary objects (trained weights). The relational database
is an Oracle database versioned with Liquibase [27]. The
object storage service currently uses a CERN NFS service
but will change to the Openstack Object Store (Swift) in the
near future.

Client Library
MLP provides a single client library for model developers

and users alike. Distributed as a Python package, it allows

Figure 2: Simplified architecture diagram. Highlighted in blue are the components provided by MLP.
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model users to publish model parameters, perform search
queries against the model registry, and instantiate and use
both embedded (see Listing 2) and standalone (see Listing
5) models.

To publish the model parameters of a trained model to
MLP, model developers instantiate the MLP client and call a
publishing method, providing the trained model, a name for
the parameters, and an optional version number, as shown
in Listing 1.

from mlp_client import Client, Profile, AUTO
from my_model import MyModel

model = BeamLineModel()
model.fit(...)

client = Client(Profile.PRO)
client.publish_model_parameters_version(

model,
name="proton_beam_config",
version=AUTO, # generated by server

)

Listing 1: Publishing model parameters versions

When re-training a model continuously, the combination
of automatic version generation in the training process (List-
ing 1) and automatic version selection in the consumer pro-
cess (Listing 2) makes it easy to set up continuous retraining
processes without implementing complex version manage-
ment logic on both the training and consumer sides.

Registration Automation
Automatic model type registration is accomplished using

Continuous Integration (CI). Model developers only need to
include a Gitlab CI template provided by MLP. As a single
project can contain multiple models, model developers must
also register their models as Python entry points under a
specific key, as shown in Listing 3.

When model developers push a git tag, the CI jobs de-
fined by the template will publish the package containing the
model code to a central repository. It will then iterate over all
the models declared in the package and publish them to the

from mlp_client import Client, Profile, AUTO
from my_model import MyModel

client = Client(Profile.PRO)
model = client.create_model(

model_class=BeamLineModel,
params_name="ion_beam_config",
params_version=AUTO

)

result = model.predict(data)

Listing 2: Using embedded models

[options.entry_points]
mlp_models =

model_1 = awake:VaeEncoder
model_2 = awake:VaeDecoder

Listing 3: Model type declaration in setup.cfg

model registry server. The version of the new model types
is determined from the name of the tag. The provided CI
template can be extended with custom steps, such as linting
and testing jobs, as shown in Listing 4, leaving model devel-
opers complete control of their CI pipelines and allowing
them to add additional model validation steps if appropriate.

include:
- project: machine-learning-platform/mlp-ci

file:mlp-ci-template.yml

variables:
project_name: simple_ann

my_custom_test_job:
script: ./custom-test-script.py

Listing 4: Including and extending the Gitlab CI template

Figure 4: Simplified CI diagram.
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Standalone Deployment
If the model is declared as standalone, a standalone de-

ployment job is also run. For each model type declared in the
model developer’s project, the standalone deployment job
will identify all compatible model type / model parameters
combinations and deploy the latest version of each pair to
the standalone serving cluster. To deploy the models to the
serving cluster, the standalone deployment job first builds
container images which include the MTV, the MPV and a
light Python web server. The produced images are deployed
to the standalone serving cluster in a subsequent CI job, re-
placing outdated models if applicable. A simplified diagram
of the pipeline is shown in Fig. 4. When the container is
started, the web server listens for prediction requests, for-
wards them to the MTV/MPV combination, and returns a
serialized result to the remote caller.

Standalone Serving
The standalone serving component, still in the prototype

phase [28], is responsible for serving model predictions to
remote clients over HTTP. It is currently implemented as
a Kubernetes cluster with an Nginx ingress which listens
for prediction requests and forwards them to the appropriate
model container. Users can access standalone models using
the Python client and use them in a similar way to embedded
models, as shown in Listing 5. At the moment, a simple json-
based serialization mechanism is used and will be improved
in the future.

from mlp_client import Client, Profile, AUTO
from my_model import MyModel

client = Client(Profile.PRO)
model = client.create_standalone_model(

model_class="BeamLineModel",
params_name="proton_beam_config",
params_version=AUTO

)
result = model.predict(data)

Listing 5: Using standalone models

Technical solutions to autoscale model containers based
on usage are currently under investigation. Candidates in-
clude the Kubernetes Horizontal Pod Autoscaler [29], KEDA
[30] and KFServing [31].

ACHIEVEMENTS AND FUTURE PLANS
Despite its early prototype status, MLP is already under-

going user testing for an application in the AWAKE exper-
iment [32] using embedded models. It is also being evalu-
ated for prediction tasks at the Super Proton Synchrotron,
CERN’s second largest accelerator, using convolutional neu-
ral networks.

The future plans of MLP are primarily focused on inte-
gration with other systems, including ML-specific tools and

CERN internal services. ML-specific tools include exper-
iment management tools such as Neptune [6] or Weights
& Biases [33] and workflow and pipeline automation tools
such as Apache Airflow [10]. CERN internal tools include
a generic GUI application for numeric optimization, the ac-
celerator time-series data logging service (NXCALS [34]),
and settings management tools (INCA/LSA [35]).

Other plans include opening MLP to public cloud services
to simplify model training on external infrastructure and
adding user-defined metadata to models to enhance search
capabilities.
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