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Abstract 

The ITER Real-Time Framework (RTF) is a middleware 
providing common services and capabilities to build real-
time control applications in ITER such as the Plasma Con-
trol System (PCS) and plasma diagnostics.

The RTF dynamically constructs applications at runtime 
from the configuration. The principal building blocks that 
compose an application process are called Function Blocks 
(FB), which follow a modular structure pattern. The appli-
cation configuration defines the information that can influ-
ence control behaviour, such as the connections among 
FBs, their corresponding parameters, and event handlers. 
The consecutive pipeline process in a busy-waiting mode 
and a data-driven pattern minimizes jitter and hardens the 
deterministic system behaviour. In contrast, infrastructural 
capabilities are managed differently in the service layer us-
ing non-real-time threads. The deployment configuration 
covers the final placement of a program instance and thread 
allocation to the appropriate computing infrastructure.

In this paper, we will introduce the architecture and de-
sign patterns of the framework as well as the real-life ex-
amples used to benchmark the RTF. 

INTRODUCTION
The Plasma Control System is a dominant factor for the 

ITER pulsed operation, it controls all aspects of the plasma 
discharge from powering the superconducting magnets up 
to plasma termination [1]. PCS takes data from sensors and 
applies sophisticated algorithms to generate commands 
that are sent to actuators to control plasma parameters, such 
as position, shape or stability in a real-time context. De-
sign, development and verification of real-time software in 
general is a complex and often lengthy process requiring 
multiple iterations until all timing relationships are satis-
fied and the application is stable and predictable.

The RTF is a flexible high-performance software base 
that facilitates the development and deployment of com-
plex real-time applications [2]. Originally developed with 
the aim of control algorithms, the RTF can also be the basis 
for real-time data processing applications in ITER diagnos-
tic systems.

The architecture design fully considered the modularity 
and portability of the software, and is applicable and ex-
tendable even in none-ITER environments. It hides many 
details specific to real-time systems (e.g., thread manage-
ment, inter-thread data transfers, etc.), making the design 
and development of real-time software much easier and 
faster.

Strict Quality Assurance (QA) process and code audits 
enforced software integrity to bring reliable system opera-
tion. Along with the EPICS pvAccess interface that en-
riches functionality for operation, the Simulink wrapper 
block allows control model transition from the design to 
the application in an agnostic way.    

ARCHITECTURE
Overview

The RTF infrastructure provides a modular, fully ab-
stracted environment with the following key features [3]: FBs are self-contained and do not have any depend-

ency on hardware, inputs, and outputs or operating

system within the code. All relevant information for

the modules is delivered via configuration, fully re-

usable in any context. Full configurability of FBs, which can be chained to-

gether at the developer’s discretion by configuration. Fully data-driven workflow. The FBs can be sched-

uled automatically based on the availability of input

data. Configuration-based distribution of processing logic

over different threads, processes and computer nodes

(hosts). Support integrated operability using generated code

from graphical system modelling tools (e.g. Simulink

[4]). Full integration with ITER Control Data Access and

Communication (CODAC). Out of the box support for

multiple interfaces to other CODAC components (e.g.

networks, archive, supervision, etc.).

Figure 1 shows the architecture of the RTF and a Real 
Time (RT) application including their main elements and 
how they interact. The main elements are: 

 The RT application contains the processing logic that
runs on different threads, processes or computer nodes
(hosts) and contains:
o The scheduler handling the execution of pro-

cessing of FBs.
o The FBs representing an operation with inputs

and outputs.
o The gateways responsible for ensuring that the

data is transported between the FBs running in

different threads, processes or nodes.

† email address: woongryol.lee@iter.org  ____________________________________________ 

† email address: woongryol.lee@iter.org
o The RT applications running within multiple in-

stances of the real-time process.
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Figure 1: Context diagram of the Real-time Framework.

 The real-time process is the main process that runs

on a node. This process has been specifically config-

ured for real-time. It contains the following:

o A life cycle management service managing the
life cycle of the framework.

o The real-time framework context - the key ele-
ment of the real-time process consisting of Buffer,
Queue and Thread Managers that help with tasks
like allocating memory, transporting data and ex-
ecuting FBs. RTF context also includes Threads
that execute the RT application and Services that
provide high-level functionality for the RT appli-
cation, e.g., logging and archiving.

RT Application
Figure 2 shows a simple RT application that acquires 

data from two inputs, adds them together and applies them 
to an output. Each component in Fig. 2 represents a FB, 
and the links show the connection between input ports (on 
the left of the component) to output ports (on the right of 
the component). The framework handles the dependency-
based execution of FBs in either single-threaded or multi-
threaded environments as specified in the deployment con-
figuration.

Function Block
The Function Block is a representative atomic 

component to build application. The FB is similar 
terminology to the Blocks in the Simulink or the Functions 
in the LabView [5]. 

Figure 2: Example of an RT application executing in a 

single thread. 

The FB is a function responsible for the desired 
operation, from primitive to complex process algorithms, 

depending on the design intent. Each FB contains 
essential interface points: parameters, input signals 
and output signals that are constructed using a factory 
design pattern. Additonally it supports event trigger/
handler along with prarmeter writers for asynchronous 
operation shown in Fig. 3.

FBs can be delivered as shared libraries and loaded to 
RTF-based applications in run-time as dynamic plugins. It 
allows decoupling user applications from core of the RTF. 
Designers can develop, maintain and share their custom 
libraries under different lifecycles and purposes. Only few 
of common FBs such as reading from and wrting to 
console or file, and basic mathematical operations are 
provided with the framework.

FBs can encapsulate other FBs giving the RT applica-
tion an apparent hierarchical structure. In the case of 
composite FBs, such encapsulation can either have func-
tional implications on e.g., scheduling or conditional exe-
cution of contained FBs, or is used to simply group FBs 
for entirely conceptual or convenience reasons.
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Figure 3: Schematic of a function block. 

Processing of Function Blocks in a Thread
FBs are instantiated and serialized in the loading phase 

of the RTF context. Thereby, multiple function blocks exe-
cute as a chain on the thread where they are deployed. The 
ordering of function blocks is determined by the relation 
between function blocks once the configuration is parsed. 

Synchronization in real-time threads executing the FBs 
is implemented with busy-wait rather than through inter-
rupts or callbacks to avoid context switching and effec-
tively minimize jitter and response times. Thus, RT appli-
cation runs properly once it has an appropriate CPU allo-
cation, schedule policy and priority attributes. 

On start (or re-entry) of the thread, all FBs are reset. 
Then, the thread enters the active state, which has the fol-
lowing stages (Fig. 4).

Figure 4: Processing of Function Block in a Thread. 

  RT process: handles processing of the logic. All the

inputs/outputs get updated in this stage.  Process events: handles processing of all the events

that have been triggered.  Process parameters: updates the mutable pa-

rameters.  Validate: validates the execution times and/or

parameters to be validated.  Archive: archives signals and all archivable objects.

The RT process is ideal for a hard real-time mode 
operation and should be constant over all the cycles. The 
underneath rule of execution of FB is to execute process 
method periodically under rt-thread, and thus ensure pre-
dictability of execution times. Fully data-driven 
mechanism requires the FB processing logic to be imple-
mented in a non-blocking way. The remaining four 
consecutive jobs are executed in the offline real-time mode.

Framework Life Cycle Management
Since the framework is a part of a distributed control sys-

tem, multiple instances must be centrally controlled in an 
organized manner. The Life Cycle Management Service 
(LCMS) allows to centrally orchestrate the state transition 
along with loading of the configuration.

In order to increase performance and reliability, it is de-
sired to maintain the core real-time engine of RTF as light-
weight as possible, and handle all configuration loading, 
parsing and expansion logic in an external system/process. 
Portability is also ensured by exposing LCMS interfaces 
through an API which allows site-specific protocol imple-
mentations. Two protocols are currently supported; pvAc-
cess protocol from EPICS v7 and native TCP/IP.

Although EPICS has been selected as a standard middle-
ware for ITER control, the evolution of configuration prop-
agation and the need for improvement of code in terms of 
the software QA process have been raised. RTF renovated 
the primarily interface function based on the PVXS [6] as 
thereby.  

Figure 5 shows limited number of PVs that are created 
just after instantiation of the RTF and are ideal for opera-
tional control. Fig. 6 depicts RTF state machine operation 
addressed through the {}-RTF-OPSTATE PV. After load-
ing the configuration, additional application specific PVs 
will be dynamically created and published. In order to sup-
port client in a conventional manner, RTF uses the norma-
tive type, which creates a structure holding the value, 
alarm, and time structure.

Figure 5: Default PVs shown by EPICS bundle Command 

Line Interface (CLI) tool, which are minimized for config-

uration transmission and operation after RTF instantiation. 

CONFIGURATION AND DEPLOYMENT
The RTF provides four types of configurations in an 

XML-based format. 
  Environment configuration defines the computer

nodes (hosts), processes and threads that host the RTF

services and RT applications.

  Service configuration defines the services of the RTF

that provide infrastructural capabilities such as a con-

sole, logging, archiving and communications between

processes and across hosts.

  RT application configuration defines the RT appli-

cations in terms of configurable interlinked FBs that

take inputs, perform processing and produce outputs.

  Deployment configuration assigns the services and

RT applications to threads defined by the environ-

ment.
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Figure 6: State diagram controlled by LCMS. {PRFIX}-

RTF-OPSTATE PV indicates RTF state transition. 

For the pvAccess based LCMS, the environment and ser-
vice configuration is transmitted via "{PREFIX}-LOAD-
SERVICE", and "{PREFIX}-LOAD-APP" is assigned for 
the application and deployment configuration. Since the 
application configuration is decoupled from the deploy-
ment configuration, the RT application can be run on dif-
ferent computing resource defined in the environment con-
figuration without any changes to its configuration or code 
even in pulse-to-pulse operation, while the environment 
and service configuration likely unnecessary to change. 

Configuration Parser
The Configuration parser parses the input XML config-

uration files and inserts any necessary logic to create a fully 
expanded configuration. In general, parser deals with 
whole configuration, then each RTF process extracts those 
parts of configuration which they are supposed to run. This 
fully expanded configuration is then converted to an in-
memory representation of the configuration which is used 
by the real-time process. The parser is decoupled from the 
framework. The RTF provides C++ API for facilitating it 
into other programs as standalone console executable, 
rtftool, or other supervision application, Supervision (SUP) 
in ITER. 

INTERFACE SUPPORT
Great emphasis has been put into the RTF to fully inte-

grate it into the CODAC and to support all main interfaces 
such as Synchronous Databus Network (SDN), Data Ar-
chiving Network (DAN), and EPICS pvAccess protocol. 
The Nominal Device Support (NDS) service which is an 
intermediate layer for the physical hardware interfacing is 

under development. Foundational networking infrastruc-
ture is implemented as a transport layer service and there-
fore supports communication on all levels of RTF. 

The RTF also supports Simulink interface based on au-
tomatic code generation function. A direct transfer of a 
Simulink model to a real-time framework FB can be 
achieved and successfully executed. Fig. 7 shows how 
compiled library from Simulink can be used inside RTF 
through the application configuration. This offers an ex-
tremely powerful method to obtain the necessary code di-
rectly from a model. 

Figure 7: Example how Simulink wrapper FB is configured 

in the application configuration, which loads the compiled 

library. Non-scalar data types are also fully supported.  

CASE STUDY USING RTF
Multiple use case studies are being conducted from the 

IO and fusion community in order to identify possible lim-
itations and improvements in parallel with implementation 
of RTF.

PCS Prototyping
Prototyping is an efficient way to cross-check the de-

tailed intention of design and its implementation. The PCS 
components are sufficiently modularized to support as 
other systems become available, however the architecture 
remain constant for ITER lifetime. Thus it ideal for RTF 
capturing specific function individually and integrated ef-
ficiently along with project progress. 

The PCS Compact Controller (CC) is a continuous con-
troller among architectural components for versatile con-
trol purpose. It is representative as a Proportional, Integral, 
and Derivative (PID) controller with fine-tuned attributes 
tailored for plasma parameter control. As first work, CO-
DAC group implemented 19 FBs including trajectory 
block and plant model for the simulation. The FBs are 
nearly map to the individual Simulink block, verified fidel-
ity of outputs between Simulink and RTF traces [7]. 

UNINITALIZED

ERROR_INITALIZING

INITIALIZED
REDY

RUNNING

ERROR_LOADING

INITIALIZING STARTING

ERROR_STARTING

TERMINATED

Since the PCS design development is based on compo-
nents running within the Simulink platform, it is under con-
sideration the possibility to convert components from Sim-
ulink model into components compatible with the RTF in 
a quasi-automatic manner [8].
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Consequently, Simulink wrapper function had been de-
vised and verified proper transposition from model to ap-
plication with high fidelity of result. Customised FB, “Sim-
ulinkBlock”, loads the compiled library, which was auto-
matically built by the RTF CLI. 

Underlying concept is supporting the mutable parameter 
in the same manner as conventional FB. Therefore, model 
designer configures the desired function only by changing 
parameters, while maintaining the same external interface 
to the other FB. Even if model changed, thereby recompile 
the generated code, RTF FB always persists independently.

Plasma Diagnostics Data Processing 
Edge Thomson Scattering (ETS) diagnostics has been 

demonstrated in the running tokamak. The Thomson Scat-
tering diagnostics gives reliable electron temperature and 
density profiles in magnetically confined plasma. A 5GS/s 
CAEN DT5742 digitizer [9] operates in pulse mode syn-
chronized with Nd:YAG Laser system where has up to 
50Hz injection rate [10]. The customized data acquisition 
FB archives raw data through RTF transport layer whilst 
the output links to the fitting FB to eliminate back scattered 
signal. Passed series of signal conditioning, electron tem-
perature is measured using lookup table where calibrated 
data is stored as per the wavelength from the polychroma-
tor signal.

The developed prototype covering complete data acqui-
sition, processing path, archiving as well as measurements 
publishing can be used as a reference example for other 
ITER diagnostic systems.

Poloidal Field Coil Control for Plasma Start-up
The most fundamental control module of PCS is coil 

power supply for discharge control. Poloidal Field (PF) 
coil is a main actuator for plasma breakdown and thereafter 
shape and position control. CODAC commenced imple-
menting a real-life controller in order to evaluate both func-
tional and non-functional behaviour of the PCS with col-
laboration of Korea Superconducting Tokamak Advanced 
Research (KSTAR) control team.  

The full-featured mini-CODAC provides all ITER 
standard networking protocols such as real-time data com-
munication, experimental data archiver and time synchro-
nization. Additional installation of the RTF along with the 
PCS platform library facilitates building controller follow-
ing the PCS architecture design. 

11 PF controllers were devised complying with KSTAR 
native function model. Minimum protection function took 
into accounted, verified 20kHz run cycle in consecutive 
process pipeline such as exception handler, waveform gen-
erator, and PID function.  Integrated operability was veri-
fied by implementing site-dependent interface functions 
such as for MDSplus, Reflective Memory network, and 
EPICS CA.

CONCLUSION
The RTF is a flexible high-performance software plat-

form that facilitates the development and deployment of 
complex real-time applications. It was designed to be port-
able and modular, enabling high reusability and maintain-
ability of components constituting the real-time applica-
tions.

Factory design pattern, and rich function for multi-
threaded program enables building application through 
configuration-driven process. 

Prototyping activities on some of the operating Toka-
maks have demonstrated its applicability for the implemen-
tation of ITER real-time control systems. 
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