
STATUS OF BLUESKY DEPLOYMENT AT BESSY II∗

William Smith† , Sebastian Kazarski, Roland Müller, Luis Vera Ramirez, Pierre Schnizer,
Simone Vadilonga

(HZB, Berlin)
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany

Abstract
The modernization plan for the experimental DAQ at the

BESSY II [1] is underpinned by the capabilities provided by
the Bluesky software ecosystem [2]. To interface with the
hardware Bluesky relies on the Ophyd library, that provides
a consistent high-level interface across a wide-range of de-
vices. Many elements of the accelerator, some beamlines
and endstations are adopting the Bluesky software. To meet
FAIR data obligations, the capture of metadata with Bluesky
and the export into a permanent and easily accessible storage
called ICAT are investigated [3]. Finally, initial studies to
investigate the integration of ML methods, like reinforce-
ment learning [4] were performed.This paper reports on the
work that has been done so far at BESSY II to adopt Bluesky,
problems that have been overcome and lessons learned.

INTRODUCTION
The modernization strategy for experimental DAQ at

BESSY II [1] uses EPICS as the unique integration layer for
subsystems and software packages. There are many different
solutions in use on the experimental floor for the layer above
EPICS at BESSY II. This layer has to facilitate experimen-
tal flow control, data and metadata collection, storage and
analysis.

While various home-grown solutions are in use at BESSY
II, most beamlines use spec [5]. This popular and flexible
tool has an easy to learn command line interface, has been
deployed for decades in production at facilities around the
world and is known and understood by many beamline staff.
However it is not open source, has a tiny developer com-
munity, uses a language that is not well known outside the
research community and has no error checking.

Open source alternatives including Sardana [6], PShell [7]
and Bluesky [2] were all considered. The Bluesky software
ecosystem was judged the most promising tool. Many other
synchrotron facilities in Europe (Alba, PETRA III, ESRF,
ELI NP, MAX IV, SOLARIS ...) use Sardana interfacing
with TANGO. In principle it’s possible to use EPICS with
Sardana, but the underlying data models of the frameworks
differ extremly. Due to the complex adaptation effort re-
quired, no facility is doing this in production. Bluesky and
Ophyd interface natively with EPICS and there is a large user
community in the US (NSLS II, APS, LCLS, SSRL, ALS)
and a growing community in Europe (BESSY II, MPG/FHI,
Diamond, PSI/SLS ...) and around the world (CLS, ANSTO,
PLS II). Like Sardana, it’s also based on Python. The data
∗ Work funded by BMBF and Land Berlin
† william.smith@helmholtz-berlin.de

model of Ophyd devices is close to a corresponding TANGO
device server instance. That might open opportunities to
integrate complex TANGO units into Bluesky or take ad-
vantage of Sardana controlling Ophyd devices. Using a tool
based on well known language with widely available training
has made it easier to bring new people into the project.

This paper will report on progress in the deployment of
Bluesky at the facility. First background on the infrastruc-
ture of BESSY II and a specific case study, the Energy Ma-
terials In situ Lab (EMIL) beamlines, is described. Then
component integration, experimental flow control, data and
metadata collection, user interfaces, and integration with
machine learning (ML) tools are all explored.

SPECIFICS OF BESSY II
From the accelerator commissioning test bed, Bluesky

made its way to the experimental floor via instrument inte-
gration at the EMIL beamlines. With the aim of being able
to collect metadata about the state of the entire beamline
when running Bluesky plans, each element of the beam-
line was given a Python device abstraction using the Ophyd
Python package. These general devices classes were then
easily transferred to create an interface for a novel beamline
project (U49/2 PGM-2, ”Aquarius”) and to aid replacement
efforts at a spec [5] automated beamline (𝜇Spot). Work now
continues to integrate other beamlines.

Figure 1: Complex beamline switch yard of the EMIL fea-
turing multiple end stations, instruments and use cases.

CASE STUDY ON EMIL
The initial work to investigate deploying Bluesky at the

beamlines was carried out at EMIL. EMIL comes with nu-
merous additional challenges that are due to the complexity
of the set-up and the variety of instruments to serve. Plain
vanilla EPICS device control of the beamlines comes with
EDM based engineering screens, the monochromator con-
trols is based on an integrated VME application, obscur-

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRBR03

FRBR03C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

1064 Experiment Control



ing motor controls, beamline commissioning relied on spec
macros, continuous energy scan requirements are not eased
by custom hardware connectivity, the instruments are owned
by the independent legal bodies HZB and MPG. Nevertheless
the whole EMIL set-up can be seen as a pathfinder project
easing the general roll-out of Bluesky to the inventory of
BESSY II beamlines.

COMPONENT INTEGRATION
Ophyd allows us to solve one of the biggest problems with

EPICS V3, that records have no inherent structure. EPICS
V7 addresses this problem but it’s not currently widely used
outside areaDetector. Ophyd provides a framework to collect
various signals connected to records together into groups
which together form devices. It’s then possible to read the
status of an entire device in one go, and importantly for
the collection of metadata it automatically gives context to
individual parameters.

It does not solve the problem that values of components
of a device can change while they are being read. This can
only be solved at a lower level than the IOC to ensure that
parameters update synchronously.

Figure 2: Device integration, abstraction.

Following the example set by NSLS II, LCLS and other
labs a set of ophyd devices were created for every element of
the EMIL beamlines. This was challenging because of a lack
of standardization between different EPICS interfaces for
different devices, and even within the same device types at
BESSY. None of the motors on the beamline used the EPICS
Motor Record, which meant that bespoke device classes had
to be made and tested for each type. Despite this challenge
the Ophyd framework proved very flexible, all devices were
eventually integrated.

Of particular note were the devices on the beamline and at
the end station which used the epics areaDetector interface.
This included electron analyzers, cameras and spectrome-
ters. Ophyd provided relatively easy integration for all of
these, as well as providing the ability to use and control the
areaDetector plugins.

Having created Python interfaces for devices, the use of
pytest [8] for device level integration was investigated. The
existing suite of tests used by the Ophyd package help to guar-
antee that the abstraction interface itself works as expected.

Tests were created to test that physical systems operated
correctly. This was particularly important for the positioner
device classes that had to be created because the standard
EpicsMotor interface was not available. Various bugs that
would otherwise have been missed were found by test scripts
that attempted to move every motor on the beamline. More
work is needed in this area at the beamlines but the ability
to perform full integration level tests from Ophyd, through
EPICS and to real hardware is promising.

In the accelerator, tools for aperture scans and a power
supply multiplexer were developed and tested using a digital
twin with an Ophyd interface to simulated hardware. By
changing the EPICS PV name prefix passed to the Ophyd
device it could be switched to point at the real hardware. A
similar approach was used to develop a continuous energy
scan plan for the beamlines using Ophyd to connect first
to simulated and then real hardware. Digital twins were
critical to the development of these tools because there are
not spare monochromators or accelerators to test on, and the
time given for commissioning is very limited.

EXPERIMENTAL FLOW CONTROL
The commissioning of the EMIL beamlines was per-

formed with spec. The task of converting these spec macros
to Bluesky plans was relatively painless. Common spec
macros like ascan have similar Bluesky equivalents. More
bespoke macros that set up various elements of a beamline
could also be easily converted.

Ultimately a beam time manager state machine will be
needed, orchestrating sub use cases and handling the variety
of experimental plans. This will be based on scripts and
semaphores at the point of state transition.

Figure 3: Values are grouped together in continuous energy
scans by polling from the Bluesky run engine.

Continuous energy scans, in which a monochromator is
commanded to move between certain energies at a certain
rate while values are read from detectors on the beamline is
implemented in a Bluesky plan. Values from the detector(s)
and the energy of the monochromator are polled by the run
engine at a fixed rate. The monochromator is assumed to
move slowly enough that the error introduced by the energy
and detectors being read at slightly different times is insignif-

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRBR03

Experiment Control

FRBR03

1065

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



Figure 4: Connections between run engine and clients.

icant. Values of energy and detector readouts are presented
live to the user. Bluesky offers a flexible framework for im-
plementing this kind of scan, allowing for the integration of
hardware trigger systems to replace polling where necessary
in the future.

At both the beamlines and the accelerator the Bluesky run
engine is currently interacted with directly, i.e it runs in the
same process as the IPython session or Jupyter Notebook that
it’s run from. This is sufficient for our current use cases, but
we are investigating running the run engine as a service using
the Bluesky-Queueserver [9] package developed by NSLS-II
(See Fig. 4). Operating the run engine as a service means that
high importance tasks like data acquisition can be separated
completely from less important tasks like displaying live
data to clients, or writing to an eLog. If a graphical interface
crashes, the run engine will keep performing the experiment.

The Queueserver additionally gives the ability for mul-
tiple clients to queue plans, and observe what is currently
running. For complex beamlines like EMIL, user access
rights for different beamlines or endstations change regu-
larly between shifts. For example, in one shift one endstation
might need control of both beamlines, and in the next two
different endstations might need to control one beamline
each. Using existing access controls based on the EPICS
channel access gateway would be one solution, but is seen

as being too coarse and is problematic to implement on end-
station machines which tend to have common experimental
user accounts. It’s hoped that adding logic based on agreed
scheduling to the Queueserver and user authentication of the
clients will allow us to avoid problems we currently experi-
ence with multiple simultaneous remote users affecting each
other. Users should be allowed to run only particular plans
with particular devices during times agreed beforehand. This
idea will require considerable development.

DATA AND METADATA

Documents generated by the Bluesky run engine are saved
in a mongoDB. For scaler values and most waveforms, data
is saved directly in the database. For images produced by de-
tectors with an EPICS areaDetector [10] interface, Bluesky
can instruct the EPICS IOC to save images on fast storage
with unique names defined by the run engine. Those unique
names and file locations are then saved in the metadata of
the run stored in the mongoDB. When a client later wants to
access the data from a run using the unique run identifier the
Databroker [11] package fetches the image from the storage
location and presents it to the client. To the client this is
transparent, it is as if the image was saved in the mongoDB.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRBR03

FRBR03C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

1066 Experiment Control



Figure 5: Accessing images by reference with Databroker.

Separating images from the metadata reduces the require-
ments for the mongoDB database storage and network.

Bluesky is critical to BESSY II achieving it’s FAIR data
objectives. Every measurement taken with Bluesky can also
acquire values describing the state of the entire machine.
The structuring of devices with Ophyd gives context to the
names of parameters.

Callbacks can be defined which injest documents from
the run engine. These callbacks allow metadata to be har-
vested automatically about samples, repetitive important
information added automatically to eLogs, and data and
metadata to be exported to publicly accessible repositories
like ICAT in standardized Nexus format. This was explored
in a case study at EMIL [3]. Notably because documents can
be subscribed to over ZMQ, these processes can be separated
from the critical task of measuring and saving experimental
data.(See Fig. 4)

USER INTERFACES
To allow for simple overview representations synoptic

screens will be needed showing positions within their lim-

its, status information, health of devices. For these more
engineering screens CS-Studios Phoebus will be used.

Interacting with Bluesky can currently be performed in
three ways. Each has benefits and drawbacks, and each is
prefered by different users. All are being supported and
developed at BESSY II.

IPython is the most mature and popular means of interac-
tion, and the most familiar for users of spec. It can easily
and reliably produce live plots of acquired data. Browsing
acquired data through the Databroker is more cumbersome
than the other interfaces.

Jupyter notebooks can also be used. It has been challeng-
ing to get live plotting to work consistently in this environ-
ment. For our users who like using Jupyter notebooks, the
benefits of the environment have outweighed this issue. The
ability to create demonstrations which can be run and shared
has been useful for training and collaboration.

The package Bluesky-Widgets provides collection of QT
widgets for standard tasks like browsing and plotting from
the Databroker, interacting or monitoring the Queueserver,
or editing and running plans. These can be integrated with
existing QT based GUI’s, but at development at BESSY II is
focusing on building on the demo application provided with
the package. The application is an excellent base which can
be adjusted to the needs of a particular user.

Initial deployment of Bluesky at EMIL used the IPython
environment, and exported data to .spec files which could
then be opened with PyMca [12]. This provided the eas-
iest path to getting a working system that was familiar to
beamline scientists.

INTEGRATION WITH MACHINE
LEARNING TOOLS

An initial study was performed to investigate using a Rein-
forcement Learning (RL) agent with the Bluesky Run Engine
(RE) with the aim of reducing harmonic orbit perturbations.
An inhouse python package, called Naus, allowed for com-
munication between the RE and the well established Ten-
sorflow RL agent using ZMQ. Unfortunately this simple
demonstrator set-up proved too slow to be used in produc-
tion. Consequently developments of tweaked sub packages
Bluesky-RL, Bluesky-Queueserver and Bluesky-adaptive
are being followed now. Hopefully the Naus package can be
refactored to take advantage of the Queueserver framework.

OUTLOOK
Considerable progress has been made in the last year, and

the success of the work at EMIL and at the accelerator bodes
well for the roll out to other beamlines. A team of 6 engi-
neers across different departments is now working together
to develop the BESSY II Bluesky ecosystem. Bluesky imple-
mentation and development moved to the core of a BESSY II
reinforcement and modernization program. Visible achieve-
ments are convincing enough to ask for additional support
of the funding agency.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRBR03

Experiment Control

FRBR03

1067

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



A route to making data acquired at the beamlines FAIR has
been identified, and Bluesky has made it possible. Further
work is needed to put this into production, not least making
it easy for users to authenticate and associate their session
with an investigation ID.

Authentication will also play a role in the development of
access control at complex beamlines with shared resources
like EMIL. Further work is required to understand how this
can be incorporated with Bluesky.

The pathfinder study looking at integrating Bluesky with
RL agents showed promise, but was not fast enough to be
used in production in the accelerator. The work at other
facilities on this topic is being followed closely.

The Bluesky user community continues to grow at labs of
all sizes around the world. The energy and solution focused
attitude of the people involved is one of the projects biggest
assets.

ACKNOWLEDGEMENTS
The authors thank all HZB staff members active in main-

taining the complex controls infrastructure at BESSY II
for many fruitful and clarifying discussions. This includes
beamline and instrument scientists, accelerator controls,
beamline optics as well as central IT networking and storage.

Additionally we would like to thank the developers of the
Bluesky ecosystem for their work and help with our many
questions.

REFERENCES
[1] R. Müller, A.F. Balzer, P. Baumgärtel, G. Hartmann, O.-

P. Sauer, and J. Viefhaus, “Modernization of Experimental

Data Taking at BESSY II”, in Proc. ICALEPCS’19, New
York, NY, USA, Oct. 2019, pp. 65–69. doi:10.18429/
JACoW-ICALEPCS2019-MOCPL02

[2] Bluesky Project, https://Blueskyproject.io/.

[3] G. Gerrit, “FAIR Meets EMIL: Principles in Practice”, pre-
sented at ICALEPCS21, Shanghai, China, Oct, 2021, paper
WEBL05, this conference.

[4] L. Vera Ramirez, “Machine Learning Tools Improve BESSY
II Operation”, presented at ICALEPCS21, Shanghai, China,
Oct, 2021, paper THAL01, this conference.

[5] spec, Certified Scientific Software, https://certif.com

[6] https://Sardana-controls.org

[7] Pshell,Alexandre Gobbo, PSI, https://github.com/
paulscherrerinstitute/pshell

[8] pytest is a framework that makes building simple and scalable
tests easy https://docs.pytest.org/en/6.2.x/.

[9] server for queueing Bluesky plans, https://github.com/
Bluesky/Bluesky-queueserver

[10] A tool for controlling 2D detectors,
https://areadetector.github.io/master/index.
html

[11] A data access tool for Bluesky,
https://Blueskyproject.io/databroker/.

[12] X-ray fluoresence data analysis,
http://pymca.sourceforge.net/.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRBR03

FRBR03C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

1068 Experiment Control


