
RemoteVis: AN EFFICIENT LIBRARY FOR REMOTE VISUALIZATION
OF LARGE VOLUMES USING NVIDIA INDEX

T. V. Spina , D. A. D. Alnajjar, M. L. Bernardi, F. S. Furusato, E. X. Miqueles, A. Z. Peixinho∗
Brazilian Synchrotron Light Laboratory, CNPEM, Campinas, Brazil

A. Kuhn, M. Nienhaus, NVIDIA, Berlin, Germany

Abstract
Advancements in X-ray detector technology are increasing

the amount of volumetric data available for material analysis
in synchrotron light sources. Such developments are driving
the creation of novel solutions to visualize large datasets both
during and after image acquisition. Towards this end, we
have devised a library called RemoteVis to allow the
visualization of large volumes remotely in HPC nodes, using
NVIDIA IndeX as the rendering backend. RemoteVis relies on
RDMA-based data transfer to move large volumes from local
HPC servers, possibly connected to X-ray detectors, to
remote dedicated nodes containing multiple GPUs for
distributed volume rendering. RemoteVis then injects the
transferred data into IndeX for rendering. IndeX is a scalable
software capable of using multiple nodes and GPUs to render
large volumes in full resolution. As such, we have coupled
RemoteVis with slurm to dynamically schedule one or multiple
HPC nodes to render any given dataset. Remote-Vis was
written in C/C++ and Python, providing an efficient API that
requires only two functions to 1) start remote IndeX instances
and 2) render regular volumes and point-cloud (diffraction)
data on the web browser/Jupyter client.

INTRODUCTION
Improvements in synchrotron light source technology are

pushing forward the boundaries of X-ray microscopy imag-
ing. Recently, 4th generation synchrotron light sources are
increasing the amount of available beam flux and coherence,
opening the doors to novel imaging techniques while repre-
senting an improvement of orders of magnitude with respect
to previous generations. Hence, the entire imaging pipeline
is evolving to make those powerful improvements available
to the beamlines and their users; starting with the creation of
fast X-ray detectors capable of acquiring frames at multiple
kHz and reaching the development of high performance data
processing, visualization, and analysis workflows.

In this paper, we propose a volumetric data visualiza-
tion workflow in the form of a library called RemoteVis, to
address some of the challenges imposed by the large data
volumes being generated. RemoteVis is designed as an ef-
ficient C/C++ API for sending image volumes for remote
3D rendering, using NVIDIA IndeX [1] as the rendering

∗ This is a joint work between the following groups of the Brazilian Syn-
chrotron Light Laboratory: Sirius Scientific Computing (SSC – TVS,
AZP, MLB, and EXM), Throughput Enhanced Processing Unit (TEPUI
– FSF), and Beamline Software (SOL – DADA); in collaboration with
the NVIDIA IndeX team (MN and AK). Corresponding author: Eduardo
Xavier Miqueles (eduardo.miqueles@lnls.br).

backend. In-memory data is transferred directly to dedicated
servers over the network via Remote Direct Memory Access
(RDMA), without involving temporary file transfers or cen-
tralized storage. NVIDIA IndeX is a scalable software for
interactive visualization of large volumes in full resolution,
written in CUDA and designed to render data leveraging
multiple GPUs and/or multiple nodes of a distributed HPC
environment. When the volume is received by an instance
of IndeX, it is immediately injected for visualization by the
user, who can interact with the volume in real time using a
web viewer.

The combination of RemoteVis and NVIDIA IndeX aims
to overcome several limitations of existing open source and
commercial visualization softwares. For instance, Neu-
roglancer [2] is a community-supported tool for visualiza-
tion of very large volumes originally created by Google. It
is capable of displaying arbitrary (non axis-aligned) cross-
sectional views of volumetric data, as well as 3D meshes
and line-segment based models (skeletons). Neuroglancer
uses a tiling mechanism to handle zooming with different
resolutions of large volumes, which are displayed on the
web browser. Napari [3] allows simplified visualization of
n-D data via Python, while ImageJ/Fiji contains plugins for
rendering volumes [4]. 3D Slicer [5] is a rich application
devoted primarily to medical imaging, containing several
visualization tools for these types of data.

Despite some of the advantages of the aforementioned
softwares, they either make limited use of GPU capabilities
for rendering 3D volumes, relying on a single device to do
so, or only displaying cross-sections of data, while provid-
ing less than optimal techniques to handle larger volumes
(i.e., data sets with more than 20483 voxels). Even com-
mercial solutions, such as ORS DragonFly [6] and Thermo
Fisher OpenInventor [7] (Avizo/Amira), tend focus on sin-
gle GPU/single node rendering, with limited APIs that can
be used to address the needs of modern synchrotron light
sources. Finally, those softwares are usually implemented
considering that data is essentially stored on disk.

We initially designed RemoteVis to tackle the issue of
sending volumes generated on local servers connected to
X-ray detectors to remote dedicated servers for visualization.
The local servers are freed to receive data at high frame rates
and to perform local processing on the data using custom
multi-GPU code. Such processing may involve, for instance,
frame correction operations and even high performance to-
mography reconstruction [8]. In parallel, the remote servers
receive the resulting volumes and are responsible for render-
ing them at full resolution, with interactive responsiveness.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRBL05

Data Analytics

FRBL05

1047

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

1 0 0 1 0 1 0 1 0 0 0 1 1 1

1 0 0 1 0 1 0 1 0 0 0 1 1 1

1 0 0 1 0 1 0 1 0 0 0 1 1 1

1 0 0 1 0 1 0 1 0 0 0 1 1 1

1 0 0 1 0 1 0 1 0 0 0 1 1 1

Local server: Acquired Frames

Processing/Remote Visualization

Websockets

RDMA data transfer

(CPU-CPU)CPU-memory

Volume

Start IndeX (as user)

Load file from storage

(HDF5/TIFF/Raw)

CPU Shared

memory

Volume

SSC-IO: MPI data reading

Middleware

Detector

NVIDIA IndeX Instance

Figure 1: The proposed remote visualization workflow using the RemoteVis library to send volumes into NVIDIA IndeX
for visualization, via RDMA data transfer.

The volume visualization solution we propose through
RemoteVis provides much more than simple data transfer
between nodes. We extended the library to serve as a plat-
form for managing multiple instances of NVIDIA IndeX
simultaneously, running in an HPC environment via job
scheduling. Users of our APIs can transparently manipulate
those instances with no more than a couple of C/C++ or
Python functions calls. Furthermore, RemoteVis guarantees
bidirectional data communication between NVIDIA IndeX
and other softwares. This allowed us not only to send vol-
umes, but also to retrieve portions of the volume that are
being displayed for further processing. Moreover, NVIDIA
IndeX provides two important functionalities that can be
leveraged. First, the software implements the NVIDIA In-
deX Accelerated Compute (XAC) facilities, through which
custom functions can be created interactively for providing
specific scientific visualization insights. Second, we are able
to send pre-trained Deep Learning networks using Remote-
Vis to IndeX for inference. The software is then able to
apply those networks instantaneously to the volume, thereby
enhancing visualization via segmentation.

It is worth noting that Paraview [9] is an open source
software that can use NVIDIA IndeX as a highly efficient
rendering backend. We refrained from exploiting such inte-
gration to fully leverage the raw capabilities of IndeX in our
workflows.

The paper is organized as follows. We first present the
details about the RemoteVis library, including the capabili-
ties of NVIDIA IndeX. We then briefly present some results
before stating our concluding remarks.

THE REMOTEVIS LIBRARY
We may divide the RemoteVis library roughly into two

major components. The first is an API written in C/C++ and
Python whose primary goal is to perform data transfer/com-

munication between NVIDIA IndeX and other softwares,
which may be located in a same server or separated across an
Ethernet network. The second is a middleware responsible
for processing some of those API calls and for managing in-
stances of IndeX, which may be running via a job scheduling
mechanism such as slurm [10].

Figure 1 presents our visualization workflow combining
RemoteVis and NVIDIA IndeX. Given a local server being
operated by a beamline user for their experiment, the Re-
moteVis API is called to request a new IndeX visualization
server instance. The RemoteVis middleware receives this
request and initializes an instance on the beamline user’s
behalf in a remote server. All communication at this point is
performed via TCP/IP socket transparently to the user of our
API. While the NVIDIA IndeX instance is being initialized,
the local server may be acquiring frames from the attached
detector and/or conducting some processing on the received
data, in order to produce the volume containing the sample
of interest in CPU memory.

Once the sample volume is ready, yet another function call
of RemoteVis performs two operations. First, the API asks
the IndeX instance to prepare for receiving a new volume
for data injection/rendering, using the software’s websocket
communication standard. Second, the volume is sent from
the CPU memory of the local server directly to the CPU
memory of the remote server running the IndeX instance
via RDMA. When IndeX receives the volume, the software
immediately injects the data into its rendering scheme by
essentially transferring everything to multi-GPU memory.

RemoteVis is very flexible and its usage is not limited to
transferring volumes from servers connected to detectors.
Our API render volume function can be called with any 3D
volume for remote rendering in CPU memory, regardless of
the data origin. RemoteVis also provides another function to
request the remote IndeX instance to directly load a file from

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRBL05

FRBL05C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

1048 Data Analytics

central storage. To further facilitate the use of RemoteVis by
non-expert users, the library also incorporates a web inter-
face through which the users can login and immediately start
using an IndeX instance, without ever having to type a single
line of code. In the next sections, we provide more details
about NVIDIA IndeX and the components of RemoteVis.

NVIDIA IndeX
NVIDIA IndeX is a 3D volumetric interactive visualiza-

tion platform that allows scientists and researchers to visu-
alize and interact with massive data sets, make real-time
modifications, and navigate to the most pertinent parts of
the data, all in real-time, to gather better insights faster [1].
To achieve high efficiency and handle arbitrarily large data
sets, IndeX divides a volume into smaller cubes and sends
them for rendering across multiple GPUs and/or multiple
nodes. IndeX uses a truly distributed database/compute
environment to process the workload.

We implemented a plugin for data injection using IndeX’s
compute API, such that volumes are directly copied from
CPU memory into the rendering pipeline for immediate vi-
sualization. Our plugin activates data injection after the
RemoteVis library transfers the volume into the CPU mem-
ory of the server in which the IndeX instance is running, as
will be detailed later.

The NVIDIA IndeX Accelerated Computing (XAC) inter-
face enables scientists to rewrite the core data visualization
routines at runtime. XAC-based programs are written in
CUDA, compiled, and injected into the inner loops of the
volume or surface raycasters to provide scientists with real-
time visual feedback. We created XAC kernels for specific
use cases of the Brazilian Synchrotron Light Laboratory and
present some renditions in the results section (Figs. 2 and 3).

Visualization Server Middleware
NVIDIA IndeX ships with a web application built on top

of the IndeX rendering library, consisting of a websockets
server that receives JSON remote procedure calls from a Re-
act.js web viewer. The viewer displays the remotely rendered
volume as an HTML5 video stream, with which the user in-
teracts on their own web browser using mouse events. Those
events are sent to the web server and effectively change the
camera’s position. We refer to this web application as a
visualization server instance of NVIDIA IndeX in our work.

The RemoteVis library provides function calls to initial-
ize, query, and shutdown instances of IndeX. The Remote-
Vis middleware is written in Python and processes those
function calls, assigning a visualization server instance to
the requesting user upon initialization. RemoteVis utilizes
TCP/IP socket messaging between the user of our API and
the middleware to ensure transparent client-server communi-
cation in a local Ethernet network. The visualization server
instances may run directly on the server where the middle-
ware resides as separate user processes or as scheduled slurm
jobs, depending on the operation mode selected for the mid-
dleware. We detail later how slurm job integration works,
but it is important to stress that regardless of the operation

mode, the IndeX instance is started by the middleware as
a process with system permissions of the requesting user.
We thus ensure that all data access permissions are granted
accordingly and respect the underlying HPC environment
policies. Moreover, we assume the user has been previously
authenticated into the local HPC environment and has been
given the necessary privileges to use the RemoteVis API in
their code.

The middleware starts the NVIDIA IndeX web server
instance on a randomly chosen TCP/IP port that is then
associated with the user. A URL is sent back through the
API as the result of the initialization function for the user
to access the IndeX instance on their web browser. The
user may also invoke a query operation to retrieve the URL
information later, or request the instance to be shut down
programmatically.

Slurm Scheduling Integration
Since we propose RemoteVis as a framework for creat-

ing visualization workflows based on NVIDIA IndeX in an
HPC environment, a common way of sharing resources in
those settings is to make use of job schedulers such as slurm.
When using the middleware in this operation mode, it starts
visualization jobs via slurm and submits them to the job
queues specified to run visualization server instances. Once
again, those jobs receive the access permissions and slurm
priority of the requesting user.

From the RemoteVis API perspective, the primary change
in the slurm job operation mode is that the IndeX visualiza-
tion server instance may not start immediately, depending
on the state of the job queues. Hence, when the user requests
an instance the middleware’s default behavior is to create the
slurm job and respond at once. Normally, the API function
call is blocking, meaning that the user could readily send
data for visualization once it returns, because the middle-
ware waits for the instance to begin executing. This behavior
changes when using the slurm backend, and the middleware
returns the expected start date and time for the job instead of
the URL. Currently, RemoteVis transfers the responsibility
of verifying if the visualization job began to run to the user,
who should use the API query function call to determine if
the job has started.

When the IndeX instance job starts running, it commu-
nicates its current status to the middleware via RemoteVis.
If the user queries the middleware at this point, the URL of
the instance is returned as expected and data may be trans-
ferred to IndeX for visualization. It is worth noting that
the NVIDIA IndeX job may be spawned on a server dif-
ferent than the machine in which the middleware resides,
depending on the slurm configuration.

Since the user may not access the instance when the job
begins its execution, possibly because the job started earlier
than expected or the user forgot to check, the middleware
automatically sends a shutdown command within a con-
figurable grace period (usually 60 minutes) to release the
computing resources for other jobs. The middleware also
sends an estimated number of GPUs to slurm that are nec-

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRBL05

Data Analytics

FRBL05

1049

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

essary for rendering the volume, based on the size and data
types requested by the user in the initialization function call.
Those parameters are enforced during data transfer calls.

SSC-RDMA: RDMA-based Data Transfer Library
RemoteVis implements data transfer to and from NVIDIA

IndeX using RDMA. RDMA is a low latency protocol for
reading and writing information stored on CPU memory
remotely, bypassing the CPU to achieve high transfer rates.
It was originally proposed for Infiniband networks, but has
since been introduced to Ethernet through RDMA over Con-
verged Ethernet (RoCE).

We created a standalone C library called SSC-RDMA
(Sirius Scientific Computing RDMA) to achieve high data
transfer rates using RDMA, based on [11]. SSC-RDMA’s
primary goal is to transfer image volumes. Hence, the li-
brary provides two high level functions that can be called in
the receiver and sender sides, respectively. Both functions
accept two char arrays that are used to transfer the volume
of interest with arbitrary size and a header containing infor-
mation to describe the volume. We represent a 3D volume in
C array format (column-major) and therefore cast any type of
volume to a char array for generic data transfer. The size of
the linearized in bytes array must be shared between sender
and receiver out-of-band, to ensure that both sides allocate
the data with the proper size before the transfer takes place.
The char header array assumes a fixed size of 128 KB and
carries application-dependent encoded information about
the volume (e.g., dimensions, data type).

When sending a volume to the visualization server
instance for rendering, the C/C++-level RemoteVis
render_volume function accepts as input a char array
containing the volume data, the volume information (size
and data type), and the information about the instance
obtained during initialization or query. The RemoteVis
render_volume function then sends a websocket mes-
sage to IndeX to have it prepare for receiving a new vol-
ume with the corresponding size in bytes. Simultaneously,
the SSC-RDMA data transfer ssc_send function is in-
voked by the RemoteVis render_volume call and waits
for our IndeX plugin to connect for data transfer using the
receive_volume function, from the RemoteVis API. The
latter uses in turn the generic ssc_receive function of SSC-
RDMA and data is finally transferred from the local server
to the remote server where IndeX is running. Afterwards,
our plugin immediately asks the IndeX library to render the
volume by injecting it from the CPU to the GPU memory.

To retrieve a volume from NVIDIA IndeX, the pro-
cess is similar to the above. The exception is that the
retrieve_volume function from RemoteVis requests In-
deX to send the volume that is being rendered via SSC-
RDMA.

Python API and Jupyter
RemoteVis provides full access to the underlying C/C++

functions from Python, which in fact are extremely similar.
The primary difference between the functions is that the

Python version accepts Numpy arrays holding the volumes
for remote rendering. Our API can be be called directly
from Jupyter notebooks and include a special function of
RemoteVis that returns a screenshot of the current volume
visualization using IndeX an RGBA numpy array.

Web Client for User-friendly IndeX Access
Even though the RemoteVis API is very simple to use,

many users are not interested in coding, or don’t know how
to code, an application. We provide a user-friendly web
client through which the user logs into the system using their
credential of the HPC system, and then the RemoteVis API
is called to start an instance on their behalf.

Our web client communicates with a web server written
in Python/Django, which validates the user credentials on
the HPC system and calls the RemoteVis IndeX initializa-
tion function upon success. Since the RemoteVis API is
used throughout the process, all IndeX access is unified
through the RemoteVis middleware, thereby providing great
flexibility for designing visualization workflows.

We have further expanded the original React.js IndeX web
interface to allow users to load volumes from disk. The user
may navigate on a centralized repository file system using
a custom React.js component, select a volume for loading
and pass the corresponding string to our IndeX plugin. That
volume is read from disk and sent to IndeX for rendering.

SSC-IO: MPI-based Efficient HDF5 File Reading
and Writing

Since many synchrotron light sources have been adopting
the HDF5 file format for storing various imaging formats,
we implemented a library to efficiently read and write vol-
umes into memory. This library is called SSC-IO and it was
motivated by the fact that the supported way of reading and
writing HDF5 files in parallel requires using the Message
Passing Interface (MPI) standard. MPI has certain limita-
tions that hinder its use with IndeX. In particular, IndeX
implements an efficient pipeline for reading volumes from
disk using parallel callbacks that are issued only for the visi-
ble portions of the volume. Those callbacks are issued by
separate threads and work well for raw volumes. However,
the HDF5 file format does not provide proper parallelization
at the thread level, thereby decreasing performance

We designed SSC-IO to read volumes from HDF5 using
MPI and storing the result in shared CPU memory. This is
necessary because MPI spawns processes instead of threads
to achieve parallelization. Once the volume is read, we
implemented a custom loading callback plugin for IndeX that
reads data directly from CPU memory. SSC-IO parallelizes
writing a volume from CPU memory to disk in the same
way. We designed the library in Python such that we can
easily extend it to multiple HDF5 file structures.

RESULTS
In the next sections, we present some results obtained us-

ing RemoteVis and IndeX. In particular, we focus on briefly

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRBL05

FRBL05C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

1050 Data Analytics

evaluating RDMA data transfer and detailing some of the
rendering features of IndeX.

RDMA-based Data Transfer
Table 1 presents some data transfer results using SSC-

RDMA. We conducted 12 experiments using three servers,
one IBM Power 9 and two NVIDIA DGX-A100s. The Power
9 is connected to the DGX-A100 through a high speed Eth-
ernet switch at 50 Gb/s. The connection between the DGXs
is via 100 Gb/s Ethernet. The results in the table are the
average of 5 executions using float 32-bit volumes with 4
different sizes. As can be seen, SSC-RDMA is very efficient
and requires roughly 20s to transfer over 100 GB of data (for
volume with size 30723 voxels). The selected sizes reflect
some typical volume sizes produced by fast detectors in a
matter of seconds. As can be noted, SSC-RDMA achieves
roughly 45 Gb/s data transfer rates, indicating that there is
still room for improvement in our code, even though we
are able to move large volumes without using centralized
storage.

Table 1: RDMA-based data transfer times using SSC-
RDMA. Three settings were tested between three different
servers, one IBM Power 9 and two NVIDIA DGX-A100.
The IBM Power 9 (P950) is connected at 50 Gb/s to the
NVIDIA DGX-A100 while the connection between the DGX
servers is at 100 Gb/s. The selected volumes are of type
float 32 bits (4 bytes per voxel) and vary in number of voxels.
All times are in seconds. For DGX to DGX, the destination
server was the same as P950 to DGX.

vx P950 to DGX DGX to P950 DGX to DGX10243 0.87 ± 0.01 1.13 ± 0.20 0.86 ± 1.4815363 2.58 ± 0.09 3.00 ± 0.65 2.53 ± 0.4720483 5.99 ± 0.09 7.17 ± 1.47 5.98 ± 1.1230723 20.30 ± 0.26 21.89 ± 4.90 19.16 ± 3.66
XAC Rendering Kernels

We have implemented three different rendering techniques
using XAC based on some use cases of LNLS. The first XAC
kernel (S1) performs simple shading using local information
such as gradient calculation on the volume. The second
kernel (S2) simulates single scatter lighting and requires
some extra memory for rendering, but produces shadow
effects that improve visualization. The third is the most
computationally demanding and is based on the ambient
occlusion algorithm [12] (S3), requiring pre-computation to
generate an auxiliary volume to determine shadow values.
Note that all computation was done directly inside IndeX
using the XAC technology.

Figures 2 and 3 presents two samples of X-ray computed
tomography imaged at LNLS and redered using XAC. The
first figure compares basic rendering with (S1) and (S3),
while the second compares (S1) and (S2). The original
volume of the silica bead experiment (Fig. 3) can be seen
segmented in Fig. 4.

NVIDIA TensorRT CNN Inference
As previously stated, NVIDIA IndeX provides integration

with TensorFlow/NVIDIA TensorRT such that pre-trained
deep neural networks may be used to perform on-demand
inference on the visible portion of the volume. We have
devised softwares at LNLS capable of producing NVIDIA
TensorRT-optimized inference engines from CNNs created
for segmenting volumes, which can then be used with IndeX
to provide advanced data interpretation.

Figure 4 presents an example of those results. In that case,
we trained a 2D U-net [13] model to segment the phases of a
silica bead fluid flow experiment containing four phases of in-
terest (beads, water, gas, and background) using our custom
softwares and then sent the resulting TensorRT engine for
IndeX using RemoteVis. In that case, RemoteVis provides
yet another function capable of taking a serialized engine
and sending it to IndeX via SSC-RDMA for inference.

Point Cloud Rendering
NVIDIA IndeX was designed not only to render regular

volumes, but also irregular data such as meshes and particle
volumes (i.e., point clouds). We have incorporated into Re-
moteVis the capability of rendering point clouds submitted
by the user similarly to how it is done for regular volumes.
The corresponding function call accepts an array holding the
XYZ coordinates of the points and another with the values of
each one. Then, RemoteVis invokes RDMA data transfer for
each of those arrays into the server where the IndeX instance
is running and requests the software to render the point cloud
as a particle volume. The points are rendered as spheres
with radii proportional to the point values. The API is acces-
sible from C/C++ and Python as always. Figure 5 depicts an
example of point clouds being rendered from data obtained
for 3D reciprocal space mapping, a common experiment in
synchrotron light sources.

CONCLUSIONS
We presented the RemoteVis library as a framework for

creating 3D visualization workflows using NVIDIA IndeX
as the volume rendering backend. RemoteVis provides a
data transfer mechanism via RDMA to allow volumes to be
transferred from local servers to remote servers dedicated to
visualization. The data in local servers may be acquired from
X-ray detectors or simply produced by some other procedure.
RemoteVis provides auxiliary functions that can load HDF5
files directly into IndeX very efficiently using MPI. Also,
our library allows portions of the volume being rendered
to be retrieved from IndeX into other softwares for further
processing.

We also exploit in RemoteVis very useful techniques im-
plemented in IndeX. First, we are able to create insightful
rendering functions using the IndeX Accelerated Compute
technique to provide advanced visualization for certain scien-
tific cases. Second, we are able not only to render regular vol-
umes but also point clouds int IndeX using RemoteVis, also
via RDMA data transfer. Finally, we incorporate NVIDIA

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRBL05

Data Analytics

FRBL05

1051

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Figure 2: Soil sample renditions using IndeX XAC operators. (a) The original volume with basic rendering and no shading.
(b) The volume rendered with XAC local shading (S1). (c) The more advanced XAC shading scheme with ambient occlusion
(S3). Data courtesy: MOGNO beamline/Sirius, LNLS/CNPEM.

Figure 3: Silica bead fluid flow experiment renditions using IndeX XAC operators. The original image with segmentation
of the gas phase is depicted in Fig. 4 (left). Data courtesy: MOGNO beamline/Sirius, LNLS/CNPEM.

TensorRT-optimized pre-trained CNNs into IndeX, such that
our models provide on-the-fly segmentation of the data that
is used to enhanced visualization.

RemoteVis is very well suited for use in synchrotron light
sources, although it is not limited to those use cases. Re-
moteVis and IndeX can be used in HPC environments where
large data sets are produced and require fast and easy to use
tools for visualization.

ACKNOWLEDGEMENTS
We would like to acknowledge the Brazilian Ministry of

Science, Technology, and Innovation (MCTI) for funding
this work, through the Brazilian Center for Research in En-
ergy and Materials (CNPEM). We would also like to thank
the MOGNO and EMA beamline groups from Sirius/LNLS-
CNPEM for the data used in this paper.

REFERENCES
[1] NVIDIA IndeX, Sep. 2021. https://developer.nvidia.

com/nvidia-index
[2] Neuroglancer, Sep. 2021. https://github.com/google/

neuroglancer

[3] N. Sofroniew et al., Napari/napari: 0.4.11rc3, ver-
sion v0.4.11rc3, Sep. 2021. doi: 10 . 5281 / zenodo .
5349926. https : / / doi . org / 10 . 5281 / zenodo .
5349926

[4] B. Schmid, J. Schindelin, A. Cardona, M. Longair, and M.
Heisenberg, “A high-level 3d visualization api for java and
imagej,” BMC Bioinformatics, vol. 11, no. 1, p. 274, 2010.
doi: 10.1186/1471-2105-11-274. https://doi.org/
10.1186/1471-2105-11-274

[5] A. Fedorov et al., “3d slicer as an image computing plat-
form for the quantitative imaging network.,” eng, Magn. Re-
son. Imaging, vol. 30, no. 9, pp. 1323–1341, Nov. 2012,
issn: 1873-5894 (Electronic); 0730-725X (Print); 0730-
725X (Linking). doi: 10.1016/j.mri.2012.05.001.

[6] Dragonfly, Sep. 2021. https://www.theobjects.com/
index.html

[7] OpenInventor, Sep. 2021. https://www.openinventor.
com

[8] E. X. Miqueles, G. Martinez Jr., and P. P. Guerrero,
“Fast image reconstruction at a synchrotron laboratory,”
in SIAM Conf. Parallel Proc. Scientific Comp. 2020,
pp. 24–34. doi: 10 . 1137 / 1 . 9781611976137 . 3.
https://epubs.siam.org/doi/pdf/10.1137/1.9781611976137.3.
https://epubs.siam.org/doi/abs/10.1137/1.
9781611976137.3

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRBL05

FRBL05C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

1052 Data Analytics

Figure 4: Integration between a pre-trained U-net segmentation model, optimized with NVIDIA TensorRT, and IndeX
for visualization. The TensorRT inference engine is called to segment the gas phase of the sample (left) and the result is
immediately used in the 3D rendering (right). Data courtesy: MOGNO beamline/Sirius, LNLS/CNPEM.

Figure 5: Point cloud renditions by NVIDIA IndeX as a particle volume. The XYZ and point value data are transferred
by RemoteVis using SSC-RDMA and the points are rendered as spheres with radii proportional to their values. The user
can then select which points to view based on their radii (left) by simply altering the considered colormap (right). Data
courtesy: EMA beamline/Sirius, LNLS/CNPEM.

[9] U. Ayachit, The ParaView Guide: A Parallel Visualization
Application. Clifton Park, NY, USA: Kitware, Inc., 2015,
isbn: 1930934300.

[10] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple
linux utility for resource management,” in Job Scheduling
Strategies for Parallel Processing, D. Feitelson, L. Rudolph,
and U. Schwiegelshohn, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 44–60, isbn: 978-3-540-39727-4.

[11] T. Bedeir, Basic flow control for rdma transfers, Ac-
cessed on Sep 4, 2021, Jan. 2013. http : / / www .
hpcadvisorycouncil . com / pdf / vendor _ content /
basic-flow-control-for-rdma-transfers.pdf

[12] G. Miller, “Efficient algorithms for local and global ac-
cessibility shading,” in SIGGRAPH, ser. SIGGRAPH ’94,
New York, NY, USA: ACM, 1994, pp. 319–326, isbn:
0897916670. doi: 10 . 1145 / 192161 . 192244. https :
//doi.org/10.1145/192161.192244

[13] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolu-
tional networks for biomedical image segmentation,” in Med-
ical Image Computing and Computer-Assisted Intervention
– MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells, and
A. F. Frangi, Eds., Cham: Springer International Publishing,
2015, pp. 234–241, isbn: 978-3-319-24574-4.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-FRBL05

Data Analytics

FRBL05

1053

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

