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Abstract 

Using machine learning (ML) in various contexts is 
increasing due to advantages such as automation for 
everything, trends and pattern identification, highly error-
prone, and continuous improvement. Even non-computer 
experts are trying to learn simple programming languages 
like Python to implement ML models on their data. Despite 
the growing trend towards ML, no study has reviewed the 
efforts made on using ML in synchrotrons to our 
knowledge. Therefore, we are examining the efforts made 
to use ML in synchrotrons to achieve benefits like 
stabilizing the photon beam without the need for manual 
calibrations of measures that can be achieved by reducing 
unwanted fluctuations in the widths of the electron beams 
that prevent experimental noises obscured measurements. 
Also, the challenges of using ML in synchrotrons and a 
short synthesis of the reviewed articles were provided. The 
paper can help related experts have a general 
familiarization regarding ML applications in synchrotrons 
and encourage the use of ML in various synchrotron 
practices. In future research, the aim will be to provide a 
more comprehensive synthesis with more details on how to 
use the ML in synchrotrons.   

INTRODUCTION 
Synchrotrons light sources are very large-scale 

experimental facilities. A synchrotron is a large machine 
whose size is about a football field (Fig. 1). In these 
facilities, electrons are accelerated to almost the speed of 
light. By deflecting electrons through magnetic fields, they 
create incredibly bright light. The electrons are deviated in 
the storage ring by different magnetic components such as 
bending magnets, undulators, wigglers, focusing magnets. 
This deviation results in a tangential emission of X-Rays 
by the electrons. The resulting X-rays are emitted as dozens 
of thin beams, each channeled down "beamlines" 
surrounding the storage ring in the experimental 
workstations where the light is used for research. Each 
beamline is designed for use with a specific technique or 
type of analysis [1]–[3]. The produced light is advancing 
research and development in fields as diverse as 
biosciences, medical research, environmental sciences, 
agriculture, minerals exploration, advanced materials, 

engineering, forensics [1]. The intense and highly focused 
light is used to study the dynamic and structure of materials 
down to atomic level using various techniques offered by 
different beamlines like diffraction, spectroscopy, 
tomography, and imaging [4]. Please see the references 
[1]–[3], [5] to see how a synchrotron works in more detail. 
Also, the list of light sources of the world can be found in 
[6].  

Synchrotrons light sources worldwide are experiencing 
fast changes from traditional 3rd generation to multi-bend 
achromatic (MBA)-based 4th generation storage ring light 
sources to achieve high-brightness and low-emittance 
upgrades [7], [8]. The Advanced Photon Source (APS) and 
the Advanced Light Source (ALS) are both being upgraded  

 

 
Figure 1: A 3D illustration of a synchrotron [2]. 

 
to MBA-based new rings. Diamond Light Source (DLS) 

designed a machine lattice based on double triple bend 
achromats [8]. The upgrades will substantially harness the 
light beam brightness from what is offered by the existing 
rings (the light brightness is much more greater than the 
sunlight) [7].  

The rapid development of synchrotrons massively is 
accompanied by two significant challenges. First, the new 
rings drive for significantly lower emittances. Therefore, 
the beam dynamics in the rings become extremely 
nonlinear, causing smaller dynamic aperture and 
potentially smaller momentum aperture [7]. The extremely 
small emittance in a new ring needs much higher beam 
stability, which raises the need for a good understanding of 
the impact of environmental factors on the accelerator and  ___________________________________________  
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beams [7]. Second, the speed of doing experiments and the 
amount of raw data collected during each experiment is 
increasing [9], [10]. Typically, each light source 
theoretically can produce one petabyte of data per day [11]. 
Or accelerators can generate three-petabyte data just in one 
experiment [12]. The manual analysis of such massive data 
volumes is no longer possible [9], [10]. 

Moreover, the lack of automatic data analysis prevents 
the delivery of new science from analyzing many collected 
raw data. These effects are collectively called “data 
deluge”, which is a prevalent problem in synchrotrons [9]–
[11]. To overcome issues such as data deluge, Machine 
Learning (ML), a subset of artificial intelligence that 
studies algorithms able to learn autonomously and directly 
from the existing datasets, can be very effective [13], [14]. 
Using ML in many contexts is increasing due to advantages 
such as automation for everything, trends and pattern 
identification, highly error-prone, and continuous 
improvement [15]. Even non-computer experts are trying 
to learn simple programming languages like Python to 
implement ML models on their data. Despite the growing 
practice towards ML, no study has reviewed the efforts 
made on using ML in synchrotrons to authors’ knowledge. 
ML can be used to achieve benefits like: 

• Reducing unwanted fluctuations in the widths of the 
electron beams produced at synchrotrons that, in turn, 
can prevent experimental noises obscured 
measurements. This work can stabilize the photon 
beam without the need for manual calibrations of 
measures [16].  

• Preventing data deluge [9], [10]  
• Reducing user-in-the-loop decision-making [9], [10], 

[17] 
• Harnessing the brightness of light sources [17] 
• Supporting efficient and clever monitoring and fault 

detection [17] 
• Optimal setup using automatic alignment [17]  
• Supporting stable conditions by providing real-time 

feedback to the experiments and end-users [17] 
• Allowing users to focus on experiments at hand and 

best use the allocated beam time rather than manual 
setups and justifications [17]  

• Providing instant and straight feedback from speedy 
physics-based simulations [17] 

In this paper, we are focusing on efforts investigated ML 
applications in synchrotrons. Also, the challenges of using 
ML in synchrotrons and a short synthesis of the reviewed 
articles were provided. Our literature review can help 
related experts have a general familiarization regarding ML 
applications in synchrotrons and encourage the use of ML 
in various synchrotron practices. 

MACHINE LEARNING AND ITS 
RELEVANT CONCEPTS 

Machine learning is widely used to make predictions or 
decisions, a subfield of artificial intelligence and the 
process of making a mathematical model without being 

explicitly programmed and using sample data, famous as 
“training data”. In other words, ML algorithms can learn to 
complete tasks using raw data [14], [18]. ML is usually 
applied for classification, regression, clustering, anomaly 
detection, dimensionality reduction, and reward 
maximization [13]. Generally speaking, ML techniques 
can be classified into three main categories, namely, 
supervised learning, unsupervised learning, and 
reinforcement learning (RL) [9]. Supervised learning is 
valuable when pairs of input and desired output are 
available. An algorithm can generalize the problem from 
the given structured data and predict unknown input. 
Unsupervised learning algorithms solve the tasks where 
only input data is available [19]. Recently, Reinforcement 
Learning (RL) has also attracted particular attention. RL is 
based on dynamic environment-agent interaction,  similar 
to a Markov decision process [4], [20]. The agent starts an 
action on the environment, and the environment reacts to 
produce a reward, which the agent uses to learn how to 
enhance its subsequent actions. RL approach does not 
require a prepared data set consisting of input-output pairs 
since the agent learns by the continuous interaction with 
the environment, varying depending on the action and its 
dynamics [19]. Finally, semi-supervised learning is 
halfway between supervised and unsupervised learning. In 
this case, the algorithm is provided with both unlabeled and 
labeled data. This category is instrumental when available 
data are incomplete and to learn representations [21].  

Among ML algorithms, clustering and deep learning 
(DL) are very popular. Regarding clustering is categorized 
as unsupervised learning (needs no labeled data). It groups 
data in some clusters. The similarity between the data 
within each cluster is maximum, and the dissimilarity 
between the data assigned to different clusters is minimum. 
Clustering algorithms are whether based on centroid 
research such as k-means or are density-based like 
DBSCAN. They see clusters as areas of high density 
separated by low density instead of determining the 
centroids. K-means is the simplest and most common 
clustering algorithm [19], and DBSCAN is robust against 
outliers. It can be applied to eliminate them on different 
stages of measurements and correction processes [22]. In 
recent years, deep learning has emerged as the leading class 
of ML algorithms, now almost synonymous with ML to the 
public. Deep learning uses neural networks (NNs)  (Fig. 2) 
composed of hidden layers carrying out different 
operations to find and explore complex data’s 
representations. It improves the performance of classifiers 
beyond that common ML algorithms offer, especially in the 
circumstances involving large datasets with high 
dimensions [23], [24]. 
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Figure 2: A fully connected NN with eight input features, 
two output labels, and two hidden layers including ten 
neurons each (Figure courtesy Alex LeNail). 

CHALLENGES OF USING MACHINE 
LEARNING IN SYNCHROTRONS 

Many AI/ML platforms for beamline tuning have been 
planned. However, most of them can not eventually be used 
regularly as part of an accelerator’s central control system, 
mainly due to limitations such as required hardware, 
algorithms, software packages, and limited accessibility of 
large and suitable datasets  [14]. The most critical 
challenges to scientists and end-users at synchrotrons for 
utilizing machine learning are [10]: 

• the necessity for long-term data preservation and 
transfer, as well as the demand for data analysis 
pipelines 

• The requirement for instant feedback helping on-site 
scientific and technical decisions during beamtime: 
Such feedback dramatically depends on the accuracy 
and automation implemented using sufficient 
hardware and software infrastructure for the real-time 
data evaluation and processing at synchrotrons. 

• The need for user-friendly software packages to 
effectively control the extensive data generated in 
synchrotrons experiments: most beamlines users are 
not experts in data computing and management.  

Alizadeh and Khaleghi also listed the most critical data 
management issues, which include: multiple source data, 
data analysis, data storage, data accessibility, data process, 
data format, data transfer, expensive data analysis tools, 
online processing, clustering, storage reliability, data 
mining, replication, real-time data collection and 
visualization [12]. 

Regarding these problems, a cross-domain and cross-
facility solution that can accelerate creating a real-time 
user-friendly, advanced data processing platform at 
synchrotrons is needed [10]. The solutions must be 
versatile and flexible enough to be integrated at various 
experimental stations and cope with the heterogeneous 
requirements of different beamlines and experiments [25]. 
For example, supervised learning algorithms need 
advanced data management platforms because they require 
large amounts of reliable training data to construct reliable 
models [19], [26]. Unfortunately, while experimentalists 
have access to large datasets, these data are typically not 
tagged appropriately and thus are not suitable for 
supervised ML methods. Continual advances in hardware 
and software have enabled tremendous increases in the 

data collection rate. However, this boost in data throughput 
is not accompanied by a corresponding rise in identifying 
useful data and the value of each datum [27].   

Some studies reported that a big data center which is 
termed a super facility is required for data management and 
processing [9], [10], [18]. Because the success of ML can 
be increased by the explosion in Big Data, advances in 
computational power, particularly the use of graphics 
processing units, and the development of more 
sophisticated ML techniques such as DL [18], [26]. 

In other words, these super facilities allow users to focus 
only on meaningful scientific data leading to discoveries 
and insights instead of dealing with unstructured and 
massive raw data. It can be achieved under users' 
simultaneous access to the synchrotrons’ experiments with 
the designed real-time user-friendly platforms [9], [10]. In 
an interview conducted by Alizadeh and Khaleghi using 
ten light source facility members, it was concluded that 
86% of participants were not familiar with big data [12]. 
Also, this study first classified synchrotrons experiments 
based on their techniques into three classes: imaging, 
scattering, and spectroscopy (Fig. 3). Then based on these 
main techniques, the researchers proposed a conceptual 
model for different data management aspects required for 
each method (Fig. 4). Some synchrotrons like the Shanghai 
Synchrotron Radiation Facility (SSRF) [9], the National 
Synchrotron Light Source II (NSLSII) [4], [17], and the 
Stanford Synchrotron Radiation Light Source (SSRL) [7] 
have made some efforts to provide the platforms needed 
for robust data analysis and management. The main work 
of these extensive platforms is that they should support a 
complete automated process for real-time and offline 
access for data management and computations to different 
operations of synchrotrons by providing sufficient 
hardware and software infrastructure [10]. 

 

 
Figure 3: Synchrotrons experiments classification based on 
their techniques [12]. 
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Figure 4: Different data management aspects required for 
each general synchrotrons experiments technique [12]. 

 
As the last point, we mention the concern that Hill et al. 

[22] noted that remote data analysis workflows and the use 
of distributed resources should be provided for ML 
purposes. The amount of beamtime required for a 
particular experiment reaches a limit as experiments 
become shorter. Therefore, it is no longer valuable for a 
user to visit the synchrotron physically. For this, remote 
data analysis and pipelines are essential in steering the 
experiment from a remote synchrotron and carrying out an 
optimal measurement.  

THE USED/ DEVELOPED ML 
ALGORITHMS, SOFTWARE, AND 

PLATFORMS FOR DATA MANAGEMENT 
High performance and low latency ML models are 

necessary to use ML techniques in everyday operations of 
synchrotrons [28]. Among these models, Neural Networks 
in synchrotrons have attracted particular attention due to 
their ability to facilitate image-centric big data science and 
many scientific imaging problems, such as denoising, 
feature segmentation, image restoration, and super-
resolution [10], [29], [30]. Furthermore, NNs can explore 
nonlinear and dynamic behaviors [24]. 

NNs process the feature of image pattern rather than the 
value of each pixel, as with classical methods [31]. 
Moreover, image-based diagnostics can be used directly in 
accelerators both as outputs and inputs [14]. NNs' accuracy 
and efficiency for image recognition and classification 
have been proved from various applications [31]. Several 
tools have implemented NNs for synchrotrons operations. 
The Xlearn toolbox implemented NNs for multiple 
synchrotron X-ray imaging problems, which is an open-
source Python package. The Features of Xlearn are [31]:   

1- Correction of instrument and beam instability artifacts 
2- Improving low-dose images  
3- Feature extraction and segmentation 
4- Super-resolution X-ray microscopy 
The Xlearn can be easily integrated into existing 

computational pipelines available at various synchrotron 
facilities [32]. Moreover, the Xlearn is based on Keras [33] 
and Theano [34] packages. Keras is a well-known platform 
for neural networks and Theano for tensor flow computing. 
Keras and Theano also include GPU acceleration, the 
critical feature of applying NNs on extensive datasets. 

Please see [35] for source code, documentation, and 
information on contributing to this library. However, NNs 
are powerful in removing noise from reconstructed images. 
For training, they require collecting a dataset of paired 
noisy and high-quality measurements, which is a 
significant obstacle to their use in practice. In this regard, 
the Noise2Inverse was designed, a deep NN-based 
denoising method for linear image reconstruction 
algorithms that do not require any additional clean or noisy 
data. Recently, Hendriksen et al. [36] used the 
Noise2Inverse for deep denoising for multi-dimensional 
synchrotron X-ray tomography without high-quality 
reference data. This study applied the Noise2Inverse 
method to datasets acquired at two synchrotron beamlines. 
First,  they used the technique on a static and a dynamic 
micro-tomography dataset from the TOMCAT beamline at 
the Swiss Light Source (SLS). Second, to investigate the 
possibility of accelerating the acquisition process using an 
X-ray diffraction tomography (XRD-CT), a dataset from 
the ID15A beamline at the European Synchrotron 
Radiation Facility (ESRF) was used. Results showed that 
Noise2Inverse is capable of accurate denoising and enables 
a substantial reduction in acquisition time while 
maintaining image quality. Liu et al. [30] introduced a deep 
NN model for real-time computed tomography at 
synchrotron light sources to improve the quality of 
tomographic reconstructions as data is collected. In turn, 
this method produces high-quality output more quickly and 
reduces the amount of data that must be collected. This 
method can be integrated into the real-time streaming 
tomography pipeline to enable better-quality images in the 
early stages of data acquisition. Using real-world datasets 
(tomography data, a common imaging modality at 
synchrotrons) collected at APS, results showed significant 
improvement in tomography image quality and system 
throughput.  

Usually, different beamlines exit in a light source facility 
covering different scientific areas and utilizing different 
multi-dimensional detector technologies. Moreover, at 
synchrotrons, each beamline typically uses an individual 
streamline data acquisition software developed specifically 
for that beamline. The types of software are often 
incompatible with each other, making it difficult for 
scientists to compare data from different beamlines and 
other light sources. Therefore, AI/ML tools must also be 
compatible with these different beamlines [17], [37]. In this 
way, the NSLSII [17] developed the Bluesky Suite, a 
collection of Python libraries for data acquisition and 
management and mainly to tackle the data “variety” 
challenge and streaming and real-time data analysis at user 
facilities. There are capabilities like all data and metadata 
generated during an experiment can be emitted in real-time 
to other processes in the form of ‘documents’, Python 
dictionaries with comprehensible schema. The generated 
documents can be distributed locally or over a network. All 
beamline hardware is accessed via a library called ophyd. 
Or, the access to historical data is through an API called 
DataBroker.   
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In another study recently published by NSLSII 
investigated reinforcement learning [4]. This paper 
demonstrated the use of RL methods for optimizing 
beamline operations. This study also explained how the 
Python-based Bluesky suite of data acquisition software 
enables RL applications at a beamline. This functionality 
by solving a classical RL problem, cartpole, in the Bluesky 
environment was demonstrated. Furthermore, the use of  
RL methods to address a prevalent scenario existed on 
high-throughput beamlines: maximizing data quality 
across multiple samples of different scattering strength 
within a limited time window. Finally, the challenges and 
overall strategy to realizing extensive development of RL 
methods at large-scale user facilities were discussed. 

The European Organization for Nuclear Research 
(CERN) is the Large Hadron Collider (LHC) site, the 
largest and highest-energy particle collider globally [13]. 
The CERN has mainly focused on applying supervised and 
unsupervised ML techniques for various domains 
associated with beam dynamics studies. Some of these 
areas include beam commissioning of the collimation 
system, optimization of beam lifetime and losses, detection 
of collective beam instabilities, heating detection from 
pressure readings, and numerical simulations of dynamic 
aperture. For example, a fully automated software for beam 
commissioning of the collimation system using ML 
algorithms was developed. This new fully automatic 
alignment software was successfully used throughout 2018 
in the LHC operations. Furthermore, this software will be 
used as the default software at the LHC in 2021. The time 
to align the collimators at injection was decreased by 
71.4%, compared to the semi-automatic alignment, namely 
from 2.8 h to 50 minutes. Also, this tool was incorporated 
into the angular alignment implementation and 
successfully decreased the alignment time by 70%, 
requiring no human intervention. For a complete review of 
how ML techniques have been incorporated at CERN, 
please see [13]. 

Topaz3 is data manipulation and machine learning 
package implemented with python libraries for 
Macromolecular Crystallography (MX) at DLS. 
Specifically, it transforms electron density map data 
obtained from diffraction experiments and uses machine 
learning to estimate whether the original or inverse hand 
has clearer information. Tensorflow-gpu is required to use 
the machine learning side of Topaz3, which speeds up the 
training and use of neural networks [38].  

One of the decades-old problems in synchrotron light 
sources facilities is that they simultaneously deliver light 
to dozens of beamlines. One side effect of this is that the 
movements of specific insertion devices (IDs), i.e., 
undulators and wigglers with variable magnetic fields, 
cause the electron beam’s size to fluctuate. These 
fluctuations affect other beamlines' performance. Usually, 
changes are reduced using corrections based on a 
combination of static, predetermined physics models and 
lengthy calibration measurements. It is periodically 
repeated to counteract drift in the accelerator and 

instrumentation. Researchers at the ALS in Lawrence 
Berkeley National Laboratory showed that NNs algorithms 
can predict noisy fluctuations in the size of beams 
generated by synchrotron light sources. Therefore, they can 
correct changes before they occur (feed-forward vs. feed-
back correction). Consequently, this approach significantly 
helps attain order-of-magnitude enhancement instability 
that fulfils the requirements for different light sources. For 
training the synchrotron, researchers fed electron-beam 
data from the ALS, including the positions of the IDs and 
blips in electron-beam performance raised by ID 
adjustments, into a NN. One key advantage of this 
approach is that the required data for retraining NNs can be 
obtained constantly, even while the feed-forward system is 
active during a regular user run [16]. Furthermore, 
continuous retraining allows the neural networks to 
continually adapt to a drifting machine and changes in ID 
configurations during run periods, independent of static 
physics models.  The developed algorithm then learned the 
complex nonlinear relationships between the ID settings 
and vertical beam size and made corrections to negate the 
blips. NNs stabilized the vertical beam size at 0.2 μm or 
0.4% of the beam size compared to 2–3% without 
correction [16].  

Another light source facility that has heavily 
investigated using machine learning for light source 
facilities is the SSRL, a division of SLAC National 
Accelerator Laboratory, operated by Stanford University 
for the Department of Energy. A recent report which the 
SSRL published shows the research activities and 
achievements during the two-year R&D project of ’beam-
based optimization and machine learning for synchrotrons’ 
at SSRL [7]. R&D project was carried out in the 
development of machine learning techniques for 
synchrotron applications in three main areas: accelerator 
design optimization, beam-based optimization, and 
analysis of accelerator operation data. First, to implement 
online optimizations, they developed the Teeport platform. 
The control systems and programming environments on 
different machines may be different. Therefore, online 
optimization algorithms developed for one machine can 
not be easily applied to other systems. Usually, the 
optimizer is a Matlab script, and the evaluator is a Python 
script. Teeport decouples the algorithm implementation 
and the experimental systems by providing a universal 
middle layer that communicates between the optimizer and 
the evaluator. Therefore, they can communicate freely. In 
Teeport, a middleware between the evaluator and optimizer 
is inserted, acting as a data normalizer and signal forwarder. 
The data flows through the middleware. Therefore, to make 
the online optimization process more controllable and 
visible, one can add the control and monitor layers to the 
middleware (Fig. 5). The features of the platform include: 
online optimization experiment, fast switch between 
different optimization settings (the only necessary actions 
needed to switch between the different optimization 
settings concerning the code are switching the 
evaluator/optimizer id and/or update the configurations of 
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the evaluator/optimizer accordingly (Fig. 6)), optimization 
performance comparison, and optimization algorithm 
benchmark. 

 

 
Figure 5: The architecture of Teeport. Teeport facilitates 
the application of optimization algorithms created in one 
programming environment to accelerators equipped with 
many different control systems and programming 
environments [7]. 

 
The Teeport platform can potentially become a 

centralized service for advanced optimization applications. 
It can be integrated lots of the optimization algorithms/test 
problems from various platforms, such as PyGMO, pymoo, 
PlatEMO, and Ocelot, to Teeport (Fig. 7).  The R & D 
project also developed two ML-based global optimization 
algorithms for storage ring nonlinear beam dynamics 
optimization. The first is the multi-generation Gaussian 
process optimizer (MG-GPO) was used to solve multiple 
objective optimization problems. The second one is a 
neural network-based method to analyze accelerator 
operation data and study underlying environmental factors' 
impact on machine performance. 

 
Figure 6: Fast switching between the simulation evaluator 
and the experimental evaluator [7]. 

 
Figure 7: Teeport as a unified interface for the optimization 
algorithms [7]. 

 
BESSY II Light Source is another synchrotron that has 

started to use machine learning. The primary efforts made 
by this synchrotron described in [39] are: (1) beam lifetime 
can be successfully predicted in a time-series fashion using 
supervised learning models trained only with 185 

accelerator variables readbacks, i.e., excluding previous 
lifetime measurements, and (2) the prototypes towards 
self-tuning of machine parameters in different optimization 
cases like injection efficiency and orbit correction using 
deep reinforcement learning agents have been 
implemented.   

The Delta synchrotron for orbit correction used machine 
learning techniques [40]. Conventional Feed-Forward 
neural networks were trained on measured orbits to apply 
local and global beam position corrections to the 1.5–GeV 
storage ring DELTA. According to this study, it can be 
demonstrated that ML techniques are an alternative 
approach for automated orbit correction of the DELTA 
storage ring. 

Fol et al. [19] focused on applying ML for beam 
diagnostics and incorporating ML concepts into 
accelerator problems. They identified four main areas that 
ML algorithms can be helpful, including virtual 
diagnostics, optimization and operation, beam optics 
correction, instrumentation fault detection. This study 
shows how different ML approaches can be incorporated 
for various functions of accelerators. For example, it has 
been concluded that reinforcement learning is suitable for 
solving complex control tasks. Or unsupervised learning is 
helpful for anomaly detection tasks such as detecting 
instrumentation defects, e.g., using clustering for faulty 
beam position monitors signal so that these methods can be 
performed directly without training in accelerator systems.  

A SHORT SYNTHESIS OF THE 
REVIEWED ARTICLES 

• To advance the field of incorporating ML in 
synchrotrons, a game-like project defining a reward 
scheme to train models to optimize a beamline 
efficiently is very effective. 

• Good works have been done to facilitate data 
management and computing at synchrotrons, but they 
are ad-hoc based on different beamlines and 
synchrotron facilities. Therefore, future works can 
focus on converging these efforts in a seamlessly 
integrated platform for diverse beamlines with 
different requirements to provide impetus to 
employing ML in different operations of synchrotrons 
like accelerator design optimization, beam-based 
optimization, and analysis of accelerator operation 
data. 

• Implementing remote data analysis workflows and the 
use of distributed resources are very effective for 
synchrotron practices. Because with the advances in 
synchrotron technologies, the amount of beamtimes 
needed for experiments is reduced tremendously, and 
an experiment can be done quickly. Therefore, 
physically visiting synchrotrons is no longer 
worthwhile.  

• As evident from the above discussions, many 
researchers for developing ML models have used 
Python. There are three main reasons for this. First, for 
Python, such as HyperText Markup Language 
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(HTML), many existing codes are widely available for 
different use cases. By combining them, standalone 
platforms can be implemented more easily and rapidly. 
Considering such features, [14] suggested some people 
at accelerator laboratories can be determined to focus 
on the application of these tools to specific problems. 
Second, many libraries for ML purposes have been 
implemented in Python like Scikit-learn, TensorFlow, 
Keras, PyTorch, etc. Third, Python is very popular 
among non-computer experts due to its simplicity.  

• Among existing ML algorithms and models, deep 
learning has been considered significantly. Almost, 
most of the reviewed articles have used NNs mainly 
due to their ability to explore nonlinear and dynamic 
behaviors and facilitate image-centric big data science.    

• Unfortunately, on the Web, less publicly available 
good and large datasets are available for synchrotrons 
practices. It can mainly reduce the speed of using ML 
models in particle accelerators. By providing suitable 
datasets at cloud-based platforms like Kaggle in a 
short time, a variety of solutions can be provided for a 
given problem. For example, a successful competition 
was organized in 2014 by the high energy physics 
community, and it attracted over 1700 participants 
[14]. 

• Advanced online optimization using ML algorithms 
can support an efficient way of finding the ideal 
machine configuration. 

• Combining big data with ML is already crucial. 
Storing, managing, and analyzing high-volume data 
are challenging problems that can be solved using this 
combination.  

• In many contexts, usually, it is sufficient to use 
previously stored data for ML purposes. However, in 
synchrotrons, it is essential to develop online data 
streaming and management platforms because real-
time usage of ML is vital for us in particle accelerators. 
Besides, processing and validating data after 
completing experiments lead to undetected problems 
and prevent online steering. Online ML algorithms and 
data processing platforms also can reduce the amount 
of data needed to be stored.  

• The existing literature does not provide many direct 
comparisons between ML techniques using the same 
publicly available datasets. Therefore, to choose the 
best method that suits a given question, an empirical 
approach investigating different proposed ML 
methods on the same dataset is recommended. 

• For storing data for ML techniques, mainly supervised 
algorithms, besides providing large datasets, it is 
essential to give techniques for tagging data and 
separating valuable and useful data from less or no 
useful data. This work reduces the amount of data 
needed to be stored and improves the efficiency of  ML 
models.   

CONCLUSION 
The suitability of ML methods has been clearly shown 

in the performed review for beam energy, brightness, 
stability, etc. But much is expected from further application 
and extension of these approaches to the most diverse 
beamlines at synchrotrons globally, offering advanced 
capabilities, exploring the most varied, time-varying, and 
nonlinear relationships. There are many efforts to provide 
data management platforms for machine learning models 
and algorithms. However, these efforts are sparse and 
heterogeneous based on different beamlines and 
synchrotrons. It is beneficial to integrate them to propose a 
more efficient environment for incorporating machine 
learning in everyday synchrotron practices. Generally, in 
large experimental facilities such as synchrotron, neutron, 
and x-ray free-electron laser (XFEL), unifying ML-ready 
solutions is needed such that they should be general and 
transferrable to different beamlines and particle 
accelerators. Moreover, ML algorithms should also have 
the capability to be used online by providing online 
powerful data analysis platforms. Otherwise, some errors 
and anomalies may not be detected, and the amount of data 
that need to be stored will increase. Feed-forward 
correction, evaluation, and optimization (e.g., Feed-
Forward Neural Networks) are more beneficial than 
feedback ones for many synchrotron practices, according 
to our review. In future research, the aim will be to present 
a more comprehensive synthesis with more details on how 
to use the ML in synchrotrons. 
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