©=2d Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9

ISSN: 2226-0358

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-FRBLO1

MACHINE LEARNING FOR ANOMALY DETECTION IN CONTINUOUS
SIGNALS

A. A. Saoulis*, K.R.L. Baker, R. A. Burridge, S. Lilley, M. Romanovschi
ISIS Neutron and Muon Source, Didcot, UK

Abstract

High availability at accelerators such as the ISIS Neutron
and Muon Source is a key operational goal, requiring rapid
detection and response to anomalies within the accelerator’s
subsystems. While monitoring systems are in place for this
purpose, they often require human expertise and intervention
to operate effectively or are limited to predefined classes of
anomaly. Machine learning (ML) has emerged as a valu-
able tool for automated anomaly detection in time series
signal data. An ML pipeline suitable for anomaly detection
in continuous signals is described, from labelling data for
supervised ML algorithms to model selection and evalua-
tion. These techniques are applied to detecting periods of
temperature instability in the liquid methane moderator on
ISIS Target Station 1. We demonstrate how this ML pipeline
can be used to improve the speed and accuracy of detection
of these anomalies.

INTRODUCTION

The ISIS Neutron and Muon source, located at the Ruther-
ford Appleton Laboratory site in Oxfordshire, UK, creates
neutron and muon beams used to perform a range of high
quality scientific experiments. The facility has developed a
great deal over its 35 years of operation [1], both increasing
the complexity of the facility and the production of ma-
chine data. Currently, anomaly detection and response are
generally handled manually by operators, and require large
amounts of domain knowledge and expertise. Outlined in
this paper is a pipeline to take unlabelled, continuous time
series data and train a model that can detect anomalies on
live data during operations, improving the response-time
and effectiveness of reacting to these anomalies.

ISIS TS1 Methane Moderator

The facility accelerates protons up to 800 MeV, which
are used to generate neutrons through a spallation process
at ISIS Target Station 1 (TS1) [1], the first of the two tar-
get stations at ISIS. These neutrons are moderated at TS1
through several different moderators, one of which is a liquid
methane moderator, in order to perform neutron scattering
experiments. For high quality experiment data, very stable
temperature in the methane moderator is required.

Whilst methane has many properties that give it excellent
performance as a moderator [2], it is well known that it
is susceptible to radiation damage [3]. The irradiation of
the methane produces long chain polymers and releases
hydrogen [3,4], the former causing the moderator to fail and

* alex.saoulis @stfc.ac.uk
FRBLO1
1032

require replacement roughly every six months. The build-
up of free hydrogen within the moderator system causes
loss of flow and leads to unpredictable pressure variability
and spiking. This causes the temperature in the methane
moderator to become unstable, which increases the variance
of neutron energy leaving the moderator; it is therefore of key
operational importance that these losses of flow are dealt
with quickly. One method through which the operations
team have dealt with this issue is through daily, scheduled
“recoveries” of the moderator that consist of flushing through
one third of the liquid methane in the system into a dump
tank. This has improved its stability, but occasional periods
of flow, and thus pressure and temperature variability, still
occur.

The operations team currently have systems in place for
detecting these instabilities, such as monitoring differential
pressure in the system for any reduction in pressure. If an
anomaly is detected, the operations team inspect the recent
behaviour of the moderator and decide whether to run an
unscheduled recovery in order to return the system to normal
operation. The current systems often fail to flag up ongoing
anomalies, leading to long periods of temperature variability
that can cause the data recorded in downstream instruments
to be unusable.

This paper will investigate the automated detection of
these periods of temperature variability, with the goal of
aiding the operations team to track down and fix issues faster.
The paper will make use of supervised Machine Learning
(ML) algorithms, which require labelled data (i.e. each data
instance has an associated class label, such as whether it
is “normal operation” or an “anomaly”) to train a model.
Finally, a brief description of the process of deployment of
such trained models to live operation will be given.

DATA PIPELINE

Here, a pipeline is given that takes raw time series data
without labels and produces a dataset that is suitable for
training ML models. In the case of the ISIS TS1 methane
moderator, there was neither a logbook nor a convenient
signal that could be used to automatically label temperature
anomalies in the historic data. One key contribution of
this paper is to define a general procedure for automatically
labelling periods of anomalous behaviour in historic time
series data so that models can be trained to detect these
periods during live operation. Note that while this paper
focuses on a single signal (i.e. a univariate time series), these
methods are generalisable to multivariate time series.

Data Analytics

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

Raw Data

The ISIS accelerator control systems have recently un-
dergone several upgrades [1, 5] that have allowed for the
long term storage of time series data from a huge number
of sources across the facility. This has provided a wealth of
raw time series data of signals across the accelerator side of
the facility stretching back to the end of 2018. As is outlined
in [5], this data is stored in a database called InfluxDB [6],
which specialises in time series storage. This allows for fast
and simple access to this time series data, greatly easing the
use of this data for data analysis and ML purposes.

The raw time series data is collected at intervals of approx-
imately 2 — 3 s, provided the value of a signal has changed.
This leads to irregular and unaligned raw data that must be
preprocessed before use in ML applications. The tempera-
ture data used in this paper is taken from signal TC68M, a
thermocouple located close to the liquid methane.

Data Preprocessing

The first step of the data pipeline is to preprocess the
data into a form that is practically useful and convenient for
use in ML [7]. The preprocessing work was done in Python,
primarily using the Python library pandas [8]. The data must
be filtered such that only data covering operational periods
of the accelerator is included in the training and test data.
This is to ensure the training and test data matches the target
domain data in production; in other words, the ML model
should be trained and evaluated on the same type of data
that it will see when it is detecting anomalies during live
operation of the accelerator. This means that out-of-cycle
periods, periods of bad/missing data (for example caused
by a hardware malfunction), and periods outside normal
operational bounds (such as temperature bounds beyond
which it can be inferred that the moderator was not in use)
must all be filtered from the data.

ML models require an input vector, also known as a feature
vector, which must be of fixed length. For an irregularly
sampled time series, simply using the raw data points as
feature vectors would lead to temporally mismatched inputs
to the model; a feature vector of length 100 could span from
e.g. 3 minutes - 10 minutes, depending on how frequently
the signal was changing during that period. Instead, feature
vectors should be regularised such that each element of the
feature vector corresponds to a fixed length of time. The raw
temperature data is downsampled into bins of fixed time by
taking a mean over that period. If there are no elements in a
downsampled period, it is inferred that the temperature did
not change from its previous value and the last known value
is forward filled into the new bin.

The data must be scaled since the stability of many ML
models require input data to be within reasonable bounds [7].
In the case of the TS1 methane moderator temperature, the
mean of each temperature window was subtracted from the
raw data. This ensured that the scaled values in the feature
vectors always lay in the range of [—10, 15], as well as help-
ing to account for non-stationarity in the time series due to

Data Analytics

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-FRBLO1

TC68M Raw Data
1244
~
%172
o 12
2
£ 120
(=¥
£
£ 118 1
2160 22:00 23:00 00:00 010 0200 0300 0£:00-. 0500 06:00 07:00
Sample 124 Sample 125 ...
6 6
(2]
=
2
g 4 4
o
£
g 2 2
=l
2
S 04 04
7]
24 -2

0 50 100 150 200 250 0 50 100 150 200 250

Figure 1: A short excerpt from the raw temperature time
series, as well as two sample feature vectors generated from
the data. Sample 124 is an example of normal operation,

and sample 125 is an example of an anomaly.

long-term drift of the moderator temperature. This choice
was made for simplicity, and the conventional choice of z-
scaling the data or normalising between [0, 1] would also
do.

Feature Vector Selection

In order to settle on a suitable feature vector, there are a
few factors that must be taken into account. The window
length must be long enough such that it can completely cover
an anomaly event; this requires data exploration to look at the
timescale over which anomalies occur in a system. A second
important consideration is the bin lengths: these should
be short enough to preserve any fine-grained structure in
the time series that distinguishes normal operation from
anomalies. Finally, in order to train models that can be
evaluated constantly in real time, the feature vectors should
be randomly sampled from the historic time series data such
that a model can be applied at any moment in time

For the TS1 methane moderator, anomalies in the tem-
perature tended to last between 1 — 2 hours, though certain
indicators of anomalies such as rapid oscillatory periods oc-
curred over much shorter timespans. As a result, 90 minute
long feature vectors with bin lengths of 20 s were chosen,
creating feature vectors of dimension (270, 1). The feature
vectors were then generated by going through the downsam-
pled time series data chronologically and extracting windows
of length 270, skipping a small, random number of bins in be-
tween feature vectors to ensure that they had been randomly
sampled. Roughly 4300 wholly distinct (i.e. no overlap)
feature vectors were generated from the 2 years of historic
temperature data, obeying the data preparation rules laid out
above. Two such feature vectors, one from each class, are
given in Fig. 1.

FRBLO01
1033

©= Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©=2d Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

LABELLING DATA

As mentioned earlier, in order to implement supervised
ML algorithms, a class label corresponding to each feature
vector is required. These are initially used to train a model
to correctly identify the class of an input feature vector, and
afterwards to evaluate the model on a test data set. With-
out any signals or logbooks that could be used to identify
instances of anomalies in the historic data, labels must be
generated directly from the feature vectors. This would
typically be extremely time consuming and require a great
deal of tedious manual work and expert knowledge. Here
a generic method for partially automated labelling of time
series feature vectors is presented.

Clustering through t-SNE

t-distributed Stochastic Neighbourhood Embedding (t-
SNE) [9] is a dimensionality reduction technique, differ-
ing from the well known Principal Component Analysis
(PCA) [10] in that it is a non-parametric, non-linear tech-
nique for embedding high dimensional feature vectors into
low dimensional space according to their similarities. The
main advantage of this technique over other dimensionality
reduction methods is that it tends to produce well defined
clusters of similar data points, which can be used to gener-
ate labels from feature vectors. Since t-SNE is tailored for
visualising high dimensional data, it proves very well-suited
to the data labelling process that will be introduced in this
section.

There are also difficulties associated with using t-SNE;
suitable hyperparameters for t-SNE must be chosen in order
to generate meaningful clusters of data, which can become
a tedious tuning process. Additionally, since the algorithm
is stochastic, it may take several runs with the same hy-
perparameters to generate well defined clusters. One other
disadvantage of t-SNE is that it is a non-parametric dimen-
sionality reduction technique, meaning that, in contrast to
e.g. PCA, the algorithm doesn’t produce a mathematical
formula that can map any high dimensional feature vector to
its low dimensional embedding. This means that new data
points cannot be embedded into the low dimensional space
after the algorithm has been run.

In this paper, t-SNE will be used to generate clusters of
similar looking feature vectors, which in turn will be used
to generate labels for a large percentage of the data with
minimal manual labelling. This relies on one key assump-
tion, which is that a similarity score between feature vectors
can be defined which is able to meaningfully distinguish
between anomalous feature vectors and normal operation.
The original t-SNE algorithm used the Euclidean distance
between two feature vectors to calculate similarity, but for
time series that can be very misaligned (due to the fact that
for continuous time signals, there are no preset start and end
points), a Euclidean distance will fail as a similarity metric.
Instead, a distance metric better suited to misaligned time
series is required.

FRBLO01
1034

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-FRBLO1

Dynamic Time Warping

Dynamic Time Warping (DTW) [11] is an algorithm well
suited to calculating the similarity between two misaligned
time series. The algorithm is designed to work for time series
that start and end at the same point, but whose main features
vary in speed and so may be offset from each other along the
time axis. There are a number of adaptations of DTW that
can be used to tailor the algorithm for a specific use-case
and set of constraints [12]. Even so, DTW works well even
when there is no guarantee that two time series have the
same start and end point; empirically, in preparation for this
paper, standard DTW performed just as well as adaptations
from [12] that accounted for these effects. As such, the
standard DTW algorithm was used to calculate the similarity
between feature vectors.

Note that in order to compare multivariate time series,
the DTW algorithm can be applied to each individual signal
(or a select few) across separate multivariate feature vectors,
and a weighted sum of the individual DTW similarities can
be used as the total similarity metric between two feature
vectors.

Labelling the Temperature Windows

In order to apply t-SNE, the parallelisable function
metrics.pairwise_distances from the Python library
scikit-learn [13] was used to generate a similarity matrix ex-
plicitly between every pair of feature vectors, using DTW as
the “metric”. This is a computationally expensive step that
has computational complexity © (n>m?), where n are the
number of feature vectors in the data set, and m is the length
of each feature vector. This step took around 30 minutes to
run for the temperature samples on six cores on a desktop
class machine. Note that this method may quickly become
infeasible for very large datasets (e.g. when the number
of samples > 10> — 100), or large feature vectors, without
access to high performance computing clusters. Once the
similarity matrix is computed, t-SNE can be run repeatedly
for hyperparameter tuning without incurring the cost of cal-
culating the similarity matrix each time. t-SNE embeddings
of the temperature samples were created through a hyperpa-
rameter grid search until a suitable embedding was generated
that had two distinct clusters of points. The final hyperpa-
rameters used for the scikit-learn function manifold.TSNE
are given in Table 1.

Table 1: t-SNE Hyperparameters

Parameter name Value

Embedding Dims 2
Perplexity 30
Learning rate 25

Iterations 5000
Method “barnes_hut”
Angle 0.5

Data Analytics

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

a)

b)

Anomaly

Figure 2: t-SNE plots showing the labelling process once
two clusters have been generated. a) The raw 2D embed-
ding generated by the t-SNE algorithm. b) The final labels
assigned to the data after all labelling steps. The interactive
plotting tool was used to get a first-pass estimate of the class
boundaries, shown by the red lines.

In this case, as can be seen in Fig. 2, two large-scale, dis-
tinct clusters are easy to discern. An interactive plotting tool
that allowed a user to select a point in the 2D embedding and
view the corresponding time series was developed to inspect
the data. Since the task was to classify normal operation ver-
sus anomaly, and not to distinguish between different types
of anomaly, it was simple to manually define cutoff planes in
the embedded space to make a first order approximation of
the feature vector labels. If there are more than two classes,
or the clusters are not simple to define manually, it could
be preferable to use an unsupervised clustering algorithm
such as k-means to calculate class boundaries. Then, the
same plotting tool was used to manually change the label
of any data points that were mislabelled on the first pass.
This step can be time-consuming, especially in cases with
large data sets and difficult-to-define class boundaries, and
may need contributions from a domain expert to correctly
classify edge-case time series.

One final step to ensure that this partially automated la-
belling process has generated accurate labels is to use a
simple model or heuristic to classify the feature vectors, and
compare the model classifications with the labels to check
for bad labels. In this case, a rolling standard deviation of the
time series was calculated, and feature vectors that exceeded
a threshold were labelled as anomalies. This discovered a
number of mislabelled data points, and was thus used to de-
crease the noisiness of the labels. Nonetheless, it should be
borne in mind that no such labelling process will be perfect,
and there will always be a degree of noisiness in the data set
labels.

Data Analytics

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-FRBLO1

NEURAL NETWORK MODELS

Once a labelled dataset has been generated, a model can be
trained using supervised ML. Neural networks have shown
great promise for time series classification tasks [14], with
recent papers and architectures delivering state-of-the-art
performance on benchmark time series datasets [15]. This
paper will introduce, train and evaluate three different neural
network (NN) based models, as well as explore the differ-
ences between them. All of the models were created, trained
and evaluated in Python using Keras [16] as the frontend
for the popular ML library Tensorflow [17]. Neural net-
works have an added of bonus of generalising naturally to
multivariate time series since they are data driven models.

Feedforward Neural Network

The simplest type of neural network is a feedforward neu-
ral network, also known as a multi-layer perceptron. The
input to the neural network is the time series feature vec-
tor. Each subsequent “layer” of the neural network can be
thought of as a matrix multiplication by matrix of size m x n,
where m is the size of the input vector and n is the number
of “nodes” in a layer, followed by an elementwise non-linear
transformation acting on the result of the matrix multipli-
cation, known as an “activation function”. The input is
“fed forward” through the network of several layers, each
of which can have different activation functions and num-
bers of nodes, until a final “output” layer that transforms the
penultimate vector into a vector of length two, with each ele-
ment corresponding to the probability that the feature vector
belongs to either the “normal operation” class or “anomaly”
class.

There are two main problems with using feedforward
NN for time series classification of the sort that has been
described in this paper. Firstly, feedforward NN learn the
relationships between fixed elements in the input vector;
since the position of features in the time series can occur
at any point in the input, and their positions with respect
to one another will be highly variable, a feedforward NN
is not well suited to learning specific relationship between
features. That said, for simple problems, it should still have
some capacity to learn general features that it can use to
make correct classifications. Secondly, feedforward NNs
are generally thought of as black-box models, which means
that it is very difficult to understand why a NN has made a
particular classification. This can be problematic for models
used in a control system to make decisions, since an operator
may want to have some understanding of why a model detects
an anomaly before making any changes.

Attention-based LSTM

The Long Short-Term Memory (LSTM) network has
emerged as a valuable tool for time series classification and
prediction problems in ML [15, 18]. It is an improvement of
the Recurrent Neural Network (RNN) architecture, which
processes an input vector in temporal order, preserving the
causal structure of a time series that is generally lost in

FRBLO01
1035

©= Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©=2d Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9

=
=

too b) @ —~ =
| V7 o NS0 " B
vy Oty Oy O .#l\&")
(@R oN7 ONN : o»l\gﬁ
5 -
o0 e * E
Y o - %
G-I/ 7 !
i\ g ila o Output N 1 ;
7 o — ! /
/ o —
LSTM
Input layer cells

ISSN: 2226-0358

Dropout
Dense

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-FRBLO1

c)

Dense

v
v
'
Global Max Pool
!
Dropout

1D Conv
Batch Norm.

Squeeze +
Excite

Figure 3: The three types of neural network used in this paper. ReLU activation function everywhere unless specified. Input
layer always has dimension 270, output always has dimension 2 with softmax activation. a) The simple feedforward network
with 4 hidden layers of size 64, 32, 16, 8 respectively. Dropout of 0.3 between each layer. b) The ALSTM architecture.
Each LSTM cell had 16 nodes. The attention layer output and final LSTM output (both tanh activation functions) are
combined before a dropout layer and a densely connected output layer. ¢) The CNN architecture with 3 1D convolutional
layers: number of filters (32, 64, and 32) and filter size (8, 5, and 3) respectively. See [15] for a detailed explanation of

architectures b) and c).

simpler NNs like feedforward networks. The LSTM intro-
duces features that allow for information to be preserved
throughout the network, giving it the ability to learn long-
term temporal dependencies in the feature vectors.

This architecture is then expanded to include an atten-
tion mechanism, creating the Attention-based LSTM (AL-
STM) [15]. In short, attention in neural networks allow the
network to learn how to identify the most important areas
in an input feature vector to make a classification, further
expanding the ability of the LSTM to learn long term de-
pendencies. Attention also has the bonus of providing some
explainability to the neural network; after evaluating the
neural network on an input feature vector, the attention ac-
tivations can be examined to see which portions of a time
series were most important in making the classification.

1D Convolutional Neural Network

The convolutional neural network (CNN) rose to promi-
nence in the field of deep learning as a standout performer
for image classification [19]. While it is most commonly
used for tasks like computer vision, 1D CNNs have also
been shown to perform well in time series classification
tasks [14, 15]. CNNs work by learning filters that are run
across an input feature vector to identify small scale edges
and features, and then combining activations of these filters
to build higher level features. The parallel between how
CNNs work and how a human goes about time series classi-
fication are striking; much like a CNN, a human searches for
shapes that match their understanding of what an anomaly
might look like, and bases their classification on what types
of shape appear in the time series.

Just as with the ALSTM, there has been a large amount of
research that focuses on making CNNs explainable. These
techniques include saliency maps [20], which use network
activations to generate maps of regions of importance over

FRBLO01
1036

the input, and occlusion methods [21] that mask regions of
the input to determine which parts of the input were most
used to make the classification decision.

TRAINING AND RESULTS

Each of these types of models were explored through net-
work architecture tweaks and hyperparameter tuning. The
final architectures and hyperparameters are given in Fig. 3.
Since there was a data imbalance with a ratio of roughly
3 : 1 between normal operation and anomaly in the feature
vectors, anomalies were given a 3x class weight in the train-
ing process to ensure that the models would not learn a bias
toward the more frequently occurring class. All of the mod-
els were trained using the default Keras Adam optimiser, and
all models finished with a softmax layer to output a vector
of probabilities of the input belonging to each class.

Of the 4300 time series samples, 65% of samples were
used for training, 15% of samples were used for validation
and the remaining 20% were used for a holdout test set on
which each model was evaluated just once after the hyperpa-
rameter tuning was complete. The test set accuracies are the
best indicator of out-of-sample performance, and are given
in Table 2.

Table 2: Model Performance on the Test Set

Network Type Accuracy (%)
Feedforward NN 97.5
ALSTM 96.0
CNN 98.3

The misclassifications on the test set were plotted and
examined in each case. Since the ground truth labels were
noisy due to the inherent problems in the data labelling

Data Analytics

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

process, many of the “misclassifications” were actually the
model outperforming the labelling process. In the case of
the CNN, the majority of misclassifications were just bad
labels, which suggested that the true CNN accuracy could
be even greater than the accuracy given in Table 2.

APPLICATION

Once these models were trained and evaluated, the feed-
forward NN and ALSTM (the CNN was omitted due to
time limitations), as well as a simple heuristic that used the
rolling standard deviation of the temperature time series to
calculate the probability of anomaly, were deployed into
production. To do this, a software stack using Docker [22]
containers that sat on top of the existing ISIS accelerator
controls MQTT messaging [23] system was developed. In
the existing ISIS accelerator control system, live changes
are sent to an MQTT broker, which are then consumed by
several downstream applications. These messages were pro-
cessed in the same way the training data was generated in
the data processing pipeline to generate rolling feature vec-
tors every 20 seconds. The feature vectors were then fed
into the neural networks each time a new bin was generated
(again, every 20 seconds). The outputs of the networks were
then sent over the same MQTT network, after which they
were collected by the metrics aggregator Telegraf [24]. The
outputs, alongside the raw time series data, were stored in
an InfluxDB [6] database, and displayed in real time in a
Grafana [25] dashboard. The software stack is shown in
Fig. 4.

Once the software stack and models had been tested for
robustness and stability for a few weeks on the live system,
a feature was added to generate control system alarms that
would appear in the Main Control Room once an anomaly
was detected. In order minimise the rate of false positives, an
alarm was only generated if all models agreed with high prob-
ability that there was an anomaly for over 20 minutes. This
alarm generation system was nominally successful, though
since this work was done so near to the start of the ISIS
long shutdown there was not enough time to generate data
to report here.

FUTURE WORK

A natural extension of the work in this paper would be
to extend the anomaly detection problem to one of anomaly
prediction. This has clear practical importance to operators,
since it would provide warning that could be used to min-
imise the impact of an anomaly, or potentially even prevent
it entirely.

Some preliminary work was carried out using results
given in this paper: the labels generated during the t-SNE
labelling process were used to get approximate timestamps
of the beginnings of the anomalies. Then, a number of extra
signals recommended by domain experts (such as pressures,
beam current, etc.) were collected and added to a feature
vector directly preceding the anomaly, giving a multivariate
time series acting as the input to the model. A model com-

Data Analytics

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-FRBLO1

Vsystem

)|

Live Data
<
H

Alarms

Data Analysis
Live Data
— 9
PP —
it Model Outputs
mMosauItto Alarms
o @ python
Akl
2 =<
—

©) telegraf

i Live Dashboard

&) influxc

Figure 4: The software stack used to generate alarms and
create live dashboards. The neural networks are evaluated
in the data analysis layer, and their outputs are fed back into
the MQTT messaging system.

— > I5Grafana

bining a CNN and ALSTM (see [15]) was trained to identify
whether a time series was a precursor to an anomaly (or
not), but it performed very poorly even after a long period
of hyperparameter tuning. Some steps that will be explored
in future work include feature engineering (likely after in-

cluding an even larger set of time series signals), different :

ML models such as Gradient Boosted Trees, and addressing
the large class imbalance through data augmentation.

CONCLUSION

A raw time series without labels was converted into a
labelled data set using the clustering technique t-SNE. This
dataset was then used to train several NN models which were
first evaluated, and then deployed into live operations to gen-
erate alarms for the operations team any time an anomaly was
detected. This pipeline provides a process through which
anomaly detection can be applied to generic time series data
streams, and proved a promising avenue for improving the
response time to anomalies and thus availability of beam at
large scale facilities.

REFERENCES

[1] Thomason, J.W.G., “The ISIS spallation neutron and muon
source—The first thirty-three years” Nuclear Instruments
and Methods in Physics Research Section A: Accelerators,

FRBLO01
1037

©= Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems

[2]

[3]

(4]

[5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

, FRB
o 1038

[0)

ISBN: 978-3-95450-221-9

ISSN: 2226-0358

Spectrometers, Detectors and Associated Equipment,
vol. 917, pp. 61-67, 2019.

Kirichek, O., Lawson, C.R., Draper, G.L., Jenkins, D.M.,
Haynes, D.J. and Lilley, S., “Solid methane moderators:
Thermodynamics and chemistry”, Journal of Neutron
Research, (Preprint), pp. 1-6, 2020.

Evans, D., “Irradiation effects in liquid methane used as a
neutron moderator”, Cryogenics, vol. 35, no. 11,
pp- 763-766, 1995.

Dean, R., Harrison, P., Burridge, R., Jenkins, D. and Probert,
M., “Process filtration of liquid methane radiation products
using centrifugal separation”. in Journal of Physics:
Conference Series, vol. 1021, no. 1, p. 012074, IOP
Publishing, May, 2018.

Finch, I.D. and Howells, G., “Controls Data Archiving at the
ISIS Neutron and Muon Source for in-depth analysis and
ML applications”, presented at the 18th Int Conf. on
Accelerator and Large Experimental Physics Control
Systems (ICALEPCS’21), Shanghai, China, 2021, paper
WEPV049, this conference.

InfluxDB: time series database,
https://www.influxdata.com/.

Kotsiantis, S.B., Kanellopoulos, D. and Pintelas, P.E., “Data
preprocessing for supervised leaning”, International journal
of computer science, vol. 1, no. 2, pp. 111-117, 2006.

pandas: data analysis tool in Python,
https://pandas.pydata.org/.

Van der Maaten, L. and Hinton, G., “Visualizing data using
t-SNE”, Journal of machine learning research, vol. 9, no. 11,
2008.

Jolliffe, I.T. and Cadima, J., “Principal component analysis:
a review and recent developments”, Philosophical
Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 374, no. 2065, p. 20150202,
2016.

Berndt, D.J. and Clifford, J., July. “Using dynamic time
warping to find patterns in time series”, in KDD workshop,
vol. 10, no. 16, pp. 359-370, 1994.

Giorgino, T., “Computing and visualizing dynamic time
warping alignments in R: the dtw package”, Journal of
statistical Software, vol. 31, no. 7, pp. 1-24, 2009.

L01

ICALEPCS2021, Shanghai, China

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-FRBLO1

Scikit-learn: machine learning in Python,
https://scikit-learn.org/stable/.

Fawaz, H.I., Forestier, G., Weber, J., [doumghar, L. and
Muller, P.A., “Deep learning for time series classification: a
review”’, Data mining and knowledge discovery, vol. 33,

no. 4, pp. 917-963, 2019.

Karim, F., Majumdar, S., Darabi, H. and Harford, S.,
“Multivariate LSTM-FCNss for time series classification”,
Neural Networks, vol. 116, pp. 237-245, 2019.

Keras: deep learning API for Tensorflow,
https://keras.io/.

Tensorflow: an end-to-end open source ML platform,
https://www.tensorflow.org/.

Siami-Namini, S., Tavakoli, N. and Namin, A.S., “A
comparison of ARIMA and LSTM in forecasting time
series”, inn 2018 17th IEEE International Conference on
Machine Learning and Applications (ICMLA), IEEE,
pp. 1394-1401, Dec. 2018.

Szegedy, C., Liu, W, Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A.,
“Going deeper with convolutions”, in Proceedings of the
IEEE conference on computer vision and pattern
recognition, pp. 1-9, 2015.

Simonyan, K., Vedaldi, A. and Zisserman, A., “Deep inside
convolutional networks: Visualising image classification
models and saliency maps”, arXiv preprint, 2013.
arXiv:1312.6034

Fong, R.C. and Vedaldi, A., “Interpretable explanations of
black boxes by meaningful perturbation”, in Proceedings of
the IEEE international conference on computer vision,

pp. 3429-3437, 2017.

Docker, https://www.docker.com/.
MQTT: message broker, https://mosquitto.org/.

Telegraf: metrics aggregator, https://www.influxdata.
com/time-series-platform/telegraf/.

Grafana: dashboarding tool, https://grafana.com/.

Data Analytics

